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We describe statistical inverse methods for the computation of initial asteroid orbits within the data
processing and analysis pipeline of the ESA Gaia space mission. Given small numbers of astrometric
observations across short time intervals, we put forward a random-walk ranging method, in which the
orbital-element phase space is uniformly sampled, up to a limiting χ2-value, with the help of the Markov-
chain Monte Carlo technique (MCMC). The sample orbits obtain weights from the a posteriori probability
density value and the MCMC rejection rate. For the first time, we apply the method to Gaia astrometry of
asteroids. The results are nominal in that the method provides realistic estimates for the orbital
uncertainties and meets the efficiency requirements for the daily, short-term processing of unknown
objects.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Gaia is an ongoing astrometric mission of the European Space
Agency (ESA) with a ground-breaking impact expected on
numerous branches of astronomy, including asteroid science
(Tanga et al., 2016; Mignard et al., 2007). Unprecedentedly accu-
rate ephemerides for hundreds of thousands of known asteroids,
along with the anticipated discovery of asteroids, will be com-
plemented by significantly expanding knowledge of asteroid
shapes, sizes, and masses as well as taxonomic classification.
Launched in December 2013, Gaia is as of August 2015 routinely
observing moving objects, that is, asteroids and other Solar System
objects, within a limiting magnitude of G¼20.7 mag.

In the study of asteroids, orbits are computed from the very
moment of discovery onwards. The initial orbits are typically
based on small numbers of observations spanning short time
intervals. Furthermore, the orbital-longitude intervals covered are
ustaf Hällströmin katu 2a, FI-
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minute as compared to the full orbital revolution about the Sun.
The Gaia Solar System object short-term processing chain (SSO-ST)
has required a robust and efficient method for initial asteroid
orbital inversion, enabling the subsequent ground-based follow-
up observations of interesting objects. In order to meet this pri-
mary requirement, a novel statistical random-walk ranging
method is presented in this work, with roots in the earlier ranging
methods by Virtanen et al. (2001), Muinonen et al. (2001), and
Oszkiewicz et al. (2009).

Several other initial orbit computation methods have been
developed by others: for example, Goldader and Alcock (2003)
have developed a method targeted for short-arc transneptunian
objects. Analogous methods have also been developed for systems
of multiple objects: for example, Hestroffer et al. (2005) have
introduced a Monte Carlo sampling version of the Thiele-Innes
method for binary asteroids. Grundy et al. (2008) have devised a
ranging method for transneptunian binaries.

For man-made objects in geocentric orbits, the initial orbit
computation problem has been recently addressed by several
researchers, in particular, for the linkage problem acute for
maintaining space-object catalogues (see, e.g., Siminski et al., 2014
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and references therein). Many of the approaches (Schumacher
et al., 2013; DeMars et al., 2012; Fujimoto et al., 2013) use the
concept of the admissible region (e.g., Milani et al., 2004), where
the range and range-rate space is typically discretized by sys-
tematic sampling. Strictly, the approaches can be limited by the
linear approximation for the remaining four dimensions. However,
when the linear approximation is valid, the systematic ranging
method by Farnocchia et al. (2015) (see also Chesley et al., 2005)
offers a complete Bayesian treatment of the inverse problem. They
introduce an informative a priori probability density for the range
and range rate. A full statistical treatment for geosynchronous
objects has been put forward by Schneider (2012), who describes
an MCMC ranging method using streak-like observations.

The original statistical ranging method (Virtanen et al., 2001;
Muinonen et al., 2001) was set out to resolve the long-lasting
challenges in the initial computation of orbits. The ranging method
starts from the selection of a pair of astrometric observations.
Thereafter, the topocentric ranges as well as the angular deviations
in Right Ascension (R.A.) and Declination (Decl.) are randomly
sampled. The two Cartesian positions allow for the computation of
orbital elements and, subsequently, the computation of ephe-
merides for the observation dates. Candidate orbital elements are
included in the sample of accepted elements if the χ2-value
between the observed and computed observations is within a pre-
defined threshold. The sample orbital elements obtain weights
based on a meticulous debiasing procedure. When the weights are
available, the full sample of orbital elements allows probabilistic
assessments for, e.g., object classification, ephemeris computation
(cf., Granvik and Muinonen, 2008), as well as the computation of
collision probabilities (Virtanen and Muinonen, 2006; Oszkiewicz
et al., 2012).

The MCMC ranging method (Oszkiewicz et al., 2009; see also
Granvik et al., 2009 and Muinonen et al., 2012) replaces the
aforedescribed original sampling algorithm with a proposal
probability density function (p.d.f.), and a chain of sample orbital
elements results in the phase space. MCMC ranging is based on a
bivariate Gaussian proposal p.d.f. for the topocentric ranges, and
allows for the sampling to focus on the phase-space domain with
most of the probability mass.

In what follows, we carry out statistical ranging of asteroid
orbits with the help of random-walk MCMC to map the phase-
space regime of acceptable orbital elements. Our novel method is
termed random-walk ranging. We apply the methods to example
Solar System objects observed by the Gaia mission, highlighting
the utilization of the methods in the Gaia data processing and
analysis pipeline.
2. Asteroid orbital inversion

2.1. Orbital-element probability density

We describe the six osculating orbital elements of an asteroid at a
given epoch t0 by the vector P. For Keplerian orbital elements, P ¼
ða; e; i;Ω;ω;M0ÞT (T is transpose) and the elements are, respectively,
the semimajor axis, eccentricity, inclination, longitude of ascending
node, argument of perihelion, and the mean anomaly at t0. The
angular elements i, Ω, and ω are referred to the ecliptic at equinox
J2000.0. For Cartesian elements, P ¼ ðX;Y ; Z; _X ; _Y ; _Z ÞT , where, in a
given reference frame at t0, the vectors ðX;Y ; ZÞT and ð _X ; _Y ; _Z ÞT denote
the position and velocity, respectively.

Let pp be the orbital-element probability density function (p.d.f.).
Within the Bayesian framework, pp is proportional to the a priori
and observational error p.d.f.s ppr and pϵ, the latter being eval-
uated for the sky-plane (“Observed-Computed”) residuals ΔψðPÞ
(Muinonen and Bowell, 1993):

ppðPÞppprðPÞpϵðΔψ ðPÞÞ;
ΔψðPÞ ¼ψ�ΨðPÞ; ð1Þ

where ψ and Ψ denote the observations and the computed
positions. pϵ is typically assumed to be Gaussian.

In order for pp to be invariant in transformations from one set
of orbital elements to another, we can regularize the statistical
analysis by Jeffreys' a priori p.d.f. (Jeffreys, 1946; cf. Muinonen
et al., 2001):

pprðPÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Σ �1ðPÞ

q
;

Σ �1ðPÞ ¼ΦðPÞTΛ�1ΦðPÞ; ð2Þ
where Σ�1 is the inverse covariance matrix evaluated for the
orbital elements P, Λ is the covariance matrix for the observational
errors andΦ contains the partial derivatives of right ascension and
declination with respect to the orbital elements. By the choice of
Eq. (2), the transformation of p.d.f.s becomes analogous to that of
Gaussian p.d.f.s. The a posteriori orbital-element p.d.f. is then, with
the help of the χ2 value evaluated for the elements P:

ppðPÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det Σ�1ðPÞ

q
exp �1

2
χ2ðPÞ

� �
;

χ2ðPÞ ¼ΔψT ðPÞΛ�1ΔψðPÞ: ð3Þ
Securing the invariance in orbital-element transformations makes,
e.g., the computation of ephemeris uncertainties and collision
probabilities independent of the choice of the orbital-element set
(Virtanen and Muinonen, 2006).

As in Oszkiewicz et al. (2009) andMuinonen et al. (2012), Jeffreys' a
priori p.d.f. is here replaced by a constant a priori p.d.f. for the Carte-
sian orbital elements. Strictly, this choice introduces Jacobians when
transformed into other orbital elements (e.g., the Keplerian elements).
The present approach is supported: first, by the non-singularity of the
Cartesian elements underscoring their regularity; second, by the strive
for simplicity in the statistical analysis; and, third, by the fact that
Jeffreys' a priori p.d.f. is not the only a priori p.d.f. conserving the forms
of the a posteriori p.d.f.'s. In summary, with P ¼ ðX;Y ; Z; _X ; _Y ; _Z ÞT , the
final a posteriori p.d.f. is

ppðPÞpexp �1
2
χ2ðPÞ

� �
;

χ2ðPÞ ¼ΔψT ðPÞΛ�1ΔψðPÞ: ð4Þ

2.2. Markov-chain Monte Carlo ranging

MCMC methods provide the practical means for sampling
complicated, unnormalized p.d.f.s (O'Hagan and Forster, 2004).
The Metropolis–Hastings algorithm, utilized presently, is based on
the computation of the ratio ar:

ar ¼
ppðP0ÞptðPj;P

0Þ
ppðPjÞptðP0;PjÞ

: ð5Þ

Here Pj and P0 denote the current and proposed orbital elements
in a Markov chain, respectively, and ptðP0;PjÞ is the proposal p.d.f.
from Pj to P0 (t stands for transition). The proposed elements P0 are
accepted or rejected with the help of a uniform random deviate
yA �0;1½:

Pjþ1 ¼
P0; yrar ;

Pj; y4ar ;

(
ð6Þ

that is, the proposed elements are accepted with the probability of
minð1; arÞ. After a number of transitions in the so-called burn-in
phase, the Markov chain, in the case of success, converges to
sample the target p.d.f. pp. For monitoring the convergence, there



K. Muinonen et al. / Planetary and Space Science 123 (2016) 95–100 97
are various diagnostic tools available (see, e.g., Oszkiewicz et al.,
2012).

MCMC ranging (Oszkiewicz et al., 2009) is initiated with the
selection of two observations from the full set of observations:
typically, the first and the last observation are selected, denoted by
A and B. Orbital-element sampling is then carried out with the
help of the corresponding topocentric ranges ðρA;ρBÞ, R.A.s
ðαA;αBÞ, and Decl.s ðδA; δBÞ. These two spherical positions, by
accounting for the light time, give the Cartesian positions of the
object at two ephemeris dates. The two Cartesian positions cor-
respond to a single, unambiguous orbit passing through the
positions at the given dates.

In what follows, we describe how the proposals Q 0 ¼
ðρ0

A;α
0
A;δ

0
A;ρ

0
B;α

0
B;δ

0
BÞT for the spherical positions can be obtained.

Independent one-dimensional Gaussian proposal p.d.f.s are uti-
lized for transitions in αA, δA, αB, and δB with standard deviations
σR:A: and σDecl: (accounting for the cos δA and cos δB divisors for
αA and αB, respectively). For ρA and ρB, a combination of two one-
dimensional Gaussian proposal p.d.f.s is used: the topocentric
distances are

ρ0
A ¼ ρA;jþylþyr ;

ρB
0 ¼ ρB;jþyl�yr ; ð7Þ

where yl and yr are Gaussian random deviates (with standard
deviations σρ;l and σρ;r , respectively) parallel and perpendicular to
the line defined by ρA ¼ ρB in the ρA, ρB plane. Equivalently, a
bivariate Gaussian p.d.f. can be utilized with equal standard
deviations σρ and a high positive correlation coefficient CorðρA;ρBÞ
for ρA and ρB:

σ2
ρ;l ¼ σ2

ρ 1þCorðρA;ρBÞ
� �

;

σ2
ρ;r ¼ σ2

ρ 1�CorðρA;ρBÞ
� �

: ð8Þ

In summary, a multivariate Gaussian proposal p.d.f. ptðQ 0;Q jÞ
emerges, where the candidate and current sets of positions are Q 0

and Q j, respectively (cf. Oszkiewicz et al., 2009). The ranges ρA and
ρB are typically highly correlated ðσρ;l⪢σρ;rÞ and σρ;l and σρ;r will
differ for different types of objects. The values for the proposal
standard deviations σR:A: and σDecl: are typically of the order of the
observational error (cf. Eqs. (1) and (2)).

In MCMC ranging, as described above, the proposal p.d.f.s are
transformed to the space of two topocentric spherical positions.
This transformation introduces Jacobians Jj and J0 into the com-
putation of ar:

ar ¼
ppðP0ÞptðQ j;Q

0ÞJj
ppðPjÞptðQ 0;Q jÞJ0

; ð9Þ

where

Jj ¼
∂Q j

∂Pj

����
����; J0 ¼ ∂Q 0

∂P0

����
����: ð10Þ

Finally, since the proposal p.d.f.s ptðQ j;Q
0Þ and ptðQ 0;Q jÞ are

symmetric, the ratio ar simplifies into

ar ¼
ppðP0ÞJj
ppðPjÞJ0

: ð11Þ

2.3. Random-walk ranging

Instead of MCMC ranging, it is typically advantageous to sample
in the entire phase-space regime below a given χ2ðPÞ level,
assigning weights on the basis of the a posteriori probability
density value and the Jacobians presented above (cf., Virtanen et
al., 2001; Muinonen et al., 2001). Define

Δχ2ðPÞ ¼ χ2ðPÞ�χ2ðP0Þ; ð12Þ
where P0 specifies a reference orbital solution. Notice that, for
linear models and Gaussian p.d.f.s, the definition of Eq. (12) yields
the well-known result

Δχ2ðPÞ ¼ ðP�P0ÞTΣ �1ðP0ÞðP�P0Þ; ð13Þ
where P0 denotes the least-squares orbital solution.

Here MCMC ranging is modified for random-walk ranging of
the phase space within a given Δχ2 level in Eq. (10) as follows.
First, assign a constant, nonzero p.d.f. value for the regime of
acceptable orbital elements and assign a zero or infinitesimal p.d.f.
value outside the regime. MCMC sampling then returns a set of
points that, upon convergence to sampling the phase space of
acceptable orbital elements, uniformly characterizes the accep-
table regime. Second, assign the a posteriori p.d.f. values as the
weights for the sample orbital elements. Since the topocentric
spherical coordinates are used in the sampling, the weights need
to be further divided by the proper Jacobian value.

In detail, in random-walk ranging uniformly sampling the
phase space of the orbital elements, the final weight factor for the
sample elements Pj is

wj ¼
1
Jj
ppðPjÞ: ð14Þ

As in MCMC ranging, the Markov chain can have the same orbital
elements repeating themselves.

How does the present random-walk ranging compare to the
original statistical ranging method? With the help of the MCMC
theory, the original method can be characterized analogously to
the present random-walk ranging. Instead of the randomwalk, the
original method can be viewed as incorporating a proposal p.d.f.
from MCMC independence sampling, where the transition is
independent of the present position of the Markov chain. As the
original method concerns uniform sampling in the phase space of
the orbital elements and the sampler is of the independence kind,
it is unnecessary to repeat the current elements should the next
independent trial be unsuccessful. Thus, combining MCMC and
importance sampling terminologies, the original method can be
characterized as being the independence-sampler ranging
method.

2.4. Software for orbital inversion

The random-walk ranging method is implemented as Java
software of the orbital-inversion development unit DU456 (within
the coordination unit CU4 entitled Object processing) which is
currently used by the French Space Agency (CNES) as the initial
orbit determination tool in the SSO-ST part of the Gaia Data Pro-
cessing and Analysis Consortium pipeline (DPAC). DU456 precedes
the planning and distribution of observation tasks for the Gaia
follow-up network in DU459—a world-wide collaboration of
observatories committed to performing follow-up observations
within 1–2 days from the Gaia observations. The follow-up net-
work projects the sample orbital elements on the sky plane in
order to allow for follow-up observations for refining the orbital
elements. Before DU456, the SSO-ST tasks entail the management
and implementation of SSO processing (DU450), auxiliary data
(DU451), identification of known objects (DU452), CCD processing
(DU453), astrometric reduction (DU454), and object threading
(DU455).

The random-walk ranging method, along with the original and
MCMC ranging methods, are implemented in the publicly available
Fortran95 asteroid-orbit-computation software package OpenOrb
(Granvik et al., 2009). In particular, the DPAC Java and the OpenOrb
Fortran95 implementations of the random-walk ranging method
have been cross-validated. We endeavour to maintain a collection
of state-of-the-art methods for asteroid orbit computation.
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3. Results and discussion

We use the astrometric data sets observed by Gaia on
November 7–9, 2014 for 89 known asteroids that, in accordance
with the Gaia publication rules, must remain anonymous in the
present context. The data for each asteroid consist of 2–7 transits.
Each transit corresponds to a single sweep of the appropriate
sector of the sky. In turn, each transit includes 1–10 separate
observations. It follows that the present data sets consist of 2–70
observations.

As most of the objects to be observed are in the main belt of
asteroids, the initial guess for the ranges is centered at 2.5 au with
σρ ¼ 0:2 au and CorðρA;ρBÞ ¼ 0:999. In other words, the ratio σ2

ρ;l :

σ2
ρ;r � 2000 : 1 (Eq. (8)). The values of R.A. and Decl. are drawn

from a Gaussian proposal centered around the first and last
observations of the data set with standard deviations of σR:A: � 10
mas and σDecl: � 5 mas, respectively.

The burn-in phase is replaced by an optimization phase in
order for the chain to converge to the regime of acceptable orbits.
Transitions are proposed with the aforedescribed Gaussian pro-
posal p.d.f. and accepted only when they result in improved χ2-
values. After four consecutive orbits within the acceptable χ2-
regime, the algorithm switches to random-walk ranging without
any specific burn-in phase. If no acceptable solutions are found
during the 50 first attempts of the optimization phase, the range
proposal is changed to be randomly drawn from values within
[1 au, 6 au], whereafter the optimization phase is repeated.

For each observation set, we have produced 2000 ranging solu-
tions with χ2ðPÞ�χ2ðP0Þo20:0, corresponding, approximately, to
the 3�σ confidence regime (�99.7%). The computations took 6 min
55 s for 89 objects (178,000 orbits altogether) on a standard 4-core
laptop computer, including the initial optimization phase. For all but
one case, 2000 orbits were generated.

As for the orbital uncertainties, the most important factor is the
time interval spanned by the observations. Increasing the interval
Fig. 1. Keplerian orbital elements from random-walk ranging for the object U1 (see text
than 2 h, illustrating wide distributions typical for such data sets.
effectively decreases the phase-space volume of possible solutions,
up to the point where the solutions are well constrained to a small
volume. The collapse of the orbital uncertainties is also described
as being a phase transition (see, e.g., Muinonen et al., 2006).

In what follows, we assess two examples U1 and U2 in detail, U
standing here for “unidentified”. The examples are chosen, on one
hand, based on the variety of the data available, and, on the other
hand, retrospectively based on the characteristics of the resulting
orbital distributions. For practical purposes of initial orbital
inversion, mapping the phase space of possible solutions is more
important than obtaining large numbers of sample orbits with
significant weights.

The observed objects are most likely to be main-belt objects
(MBOs). No near-Earth-object candidates have been found in the
data set, and a handful of objects other than MBOs are present.
Some of these MBOs have a rather well confined inclination and
longitude of the ascending node. Solutions for U1 and U2 are
presented in Figs. 1 and 2 as sets of random-walk ranging
samples against the semimajor axis with colors denoting the
weights.

The main difference in the input data of the two examples is
the observational time interval — in the case U1 in Fig. 1, the
interval is 1 h 47.3 min, whereas, in the case of U2 in Fig. 2, the
interval is 19 h 47.3 min. As can be seen, in the latter case, the
Keplerian orbital-element phase-space regime spanned is sub-
stantially smaller. Nevertheless, in both cases, markedly differing
Keplerian orbital elements are sampled. For example, the a–e plots
indicate that orbital longitudes near perihelion as well as near
aphelion are capable of matching the observations.

We have extended the analysis of the discovery data by pro-
pagating the sample orbits one day forward after the final obser-
vation date. We calculated the ephemeris and the standard
deviations for the ephemerides of the entire data set. For this part,
we used OpenOrb (Granvik et al., 2009) and generated 10,000
orbits for each observation set. The distribution of the
) with 15 observations from two transits with an observational time interval of less



Fig. 2. As in Fig. 1 for the object U2 with 35 observations from seven transits with an observational time interval of almost 20 h, illustrating one of the best available data
sets. The asteroid is likely to be a main-belt object, and the weights already indicate a preferred phase-space regime.

Fig. 3. The geocentric ephemeris prediction in R.A. and Decl. for the objects U1 and
U2 using 104 orbits propagated to a date 1.0 d after the last Gaia observation date.
For U1, the standard deviations for the ephemeris prediction are σα ¼ 3:81 and
σδ ¼ 1:61, whereas for the object U2, σα ¼ 0:061 and σδ ¼ 0:041. The ephemerides are
shifted for better display.

Fig. 4. The standard deviations in R.A. and Decl. combined into
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðσα cos δÞ2þðσδÞ2

q
for 89 objects using 104 orbits propagated 1.0 d forward from the last Gaia obser-
vation date as a function of the observational time interval.
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ephemerides for the objects with extreme values of observational
time intervals are presented in Fig. 3 for objects with minimum
(on the left) and maximum time intervals (on the right).

In Fig. 4, we present the total sky-plane uncertaintiesffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2
α cos 2 δþσ2

δ

q
as a function of the observational time interval.

The large variety of standard deviations for solutions with short
arcs probably owes to the fact that the direction along which the
ephemeris predictions are aligned results from the geometry and
observational pattern of Gaia, i.e. the observations constrain the
orbital solutions along the scanning direction but not as well in the
direction perpendicular to the scanning direction. Furthermore,
due to the short observational time intervals, the Gaia-centric
distances of the objects are poorly constrained.
Although the phase-space volume of solutions is constantly
decreasing with time, it is not until the time interval of about 12 h
that the volume becomes significantly constrained. However, fur-
ther data are required to confirm this tentative conclusion. The
warning is raised due to the small current number of cases with
time intervals exceeding 12 h.

In SSO-ST, the random-walk ranging software is not utilized for
asteroid identification: that is carried out before the orbital
inversion. However, for a handful of objects in the present data set,
objects have been identified in order to facilitate a comparison of
ephemerides from the present orbital inversion and from the
precise orbits. All but one of the true positions were within the
sky-plane uncertainty regimes predicted from the present sample
orbits.

For the particular task of the Gaia data-processing pipeline, the
parameters set for the random-walk ranging work relatively well.
Among 89 different objects, there has been only one for which no
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orbital solutions could be obtained and that may have been due to
an erroneous data set.
4. Conclusions

We have introduced a novel random-walk ranging method for
the initial computation of asteroid orbits. In the method, we
characterize the phase-space regime within a pre-defined χ2-value
by using MCMC for the generation of orbital elements. We then
assign weights to the elements on the basis of their a posteriori
probability-density values accompanied with local Jacobians.

The random-walk ranging method resembles the original and
MCMC ranging methods. On one hand, random-walk ranging is
insensitive to local extrema in the phase space, efficiently mapping the
geometry of the acceptable phase-space regime. This is somewhat
contrary to MCMC ranging that can face difficulties with multimodal
probability densities. On the other hand, random-walk ranging can
suffer from producing a scarce sample of orbital elements with small
χ2-values, as in the original ranging method. The advantages of
random-walk ranging over other initial orbit computation methods
are its robustness and computational speed.

We have successfully applied random-walk ranging to 89
asteroids observed by Gaia, constituting a validation of the SSO-ST
part of the Gaia DPAC pipeline. The produced orbital elements for
known objects are in agreement with the orbital elements for
these objects computed at the Minor Planet Center. It is notable
that the present data are the first Gaia data ever available for
orbital inversion with random-walk ranging.

We can anticipate successful asteroid discoveries by Gaia as a
result of the follow-up observations based on the orbital elements
from random-walk ranging. In the future, we will continue to
assess the a priori probability densities in the cases of scarce
observational data. Furthermore, we will compare the computa-
tional speed of the random-walk ranging method to that of other
initial orbital-inversion methods and we will optimize the method
for different classes of asteroids.
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