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ABSTRACT

Short-arc orbit determination is crucial when an asteroid is first discovered. In these cases usually the observations are so few that the
differential correction procedure may not converge. We developed an initial orbit computation method, based on systematic ranging,
which is an orbit determination technique that systematically explores a raster in the topocentric range and range-rate space region
inside the admissible region. We obtained a fully rigorous computation of the probability for the asteroid that could impact the Earth
within a few days from the discovery without any a priori assumption. We tested our method on the two past impactors, 2008 TC3 and
2014 AA, on some very well known cases, and on two particular objects observed by the European Space Agency Gaia mission.
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1. Introduction

Short-arc orbit determination is a very important step when an
asteroid is first discovered. In these cases the timing is essen-
tial, because we are interested in a rapid follow up of a possible
imminent impactor, which is an asteroid impacting the Earth
shortly after its discovery, within the same apparition (interval
of observability). The observations are so few that the standard
differential correction procedure (Milani & Gronchi 2010) of
finding an orbit by a least-squares minimization fails, and other
methods need to be used to extract information on the orbit of
the object.

Several initial orbit computation methods have been devel-
oped in the last 25 years. For instance, Muinonen & Bowell
(1993) defined a Gaussian probability density on the orbital ele-
ments space using the Bayesian inversion theory. In particular,
they determine asteroid orbital elements from optical astromet-
ric observations using both a priori and a posteriori densities; the
latter were computed with a Monte Carlo method.

The few observations in the short arc constrain the position
of the object in the sky, but they leave almost unknown the
distance from the observer (topocentric range) and the radial
velocity (topocentric range-rate). Thus, ranging methods have
been developed over the years to replace or refine the Monte
Carlo approach in the short arc orbit determination. There are
two alternative approaches to the ranging methods: statistical and
systematic methods.

The original statistical ranging method (Virtanen et al. 2001;
Muinonen et al. 2001) starts from the selection of a pair of astro-
metric observations. Then, the topocentric ranges at the epoch
of the observations are randomly sampled. Candidate orbital
elements are included in the sample of accepted elements if
the χ2 value between the observed and computed observations

is within a pre-defined threshold. Oszkiewicz et al. (2009)
improved the statistical ranging using the Markov-chain Monte
Carlo (MCMC) to sample the phase space. The MCMC orbital
ranging method is based on a bivariate Gaussian proposal PDF
for the topocentric ranges. Then, Muinonen et al. (2016) have
developed a random-walk ranging method in which the orbital-
element space is uniformly sampled, up to a χ2 value, with the
use of the MCMC method. The weights of each set of orbital
elements are based on a posteriori probability density value and
the MCMC rejection rate. These authors have developed this
method for the European Space Agency (ESA) Gaia mission,
in the framework of Gaia alerts on potentially new discovered
objects by Gaia (see Tanga et al. 2016).

On the other hand, Chesley (2005) and Farnocchia et al.
(2015b) introduced the so-called systematic ranging, which
systematically explores a raster in the topocentric range and
range-rate space (ρ, ρ̇). This technique enables the description
of asteroid orbital elements as a function of range and range-
rate. Then, the systematic ranging also allows one to determine
the subset of the sampling orbits that lead to an impact with the
Earth.

In this paper we describe a new approach to the system-
atic ranging, based on knowledge of the admissible region (AR;
Milani et al. 2004), and a new method to scan the region. The
process has some main advantages to other methods described
above as follows:
1. Our grid is more efficient, for two main reasons:

– We discard all the objects that are not in the AR, saving
CPU time and making the systematic ranging more accu-
rate in finding the region in the (ρ, ρ̇) space of the possible
orbital solutions.

– We use two different grids depending on the boundary of
the AR. The first grid is larger and less dense, the second
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is based on a refinement using the value of the post-fit χ2

of each point in the first grid (see Sect. 2.1).
2. The computation of the probability for the potential

impactors is a rigorous probability propagation from the
astrometric error model, without any assumption of a priori
probability density function on the range/range-rate space
(see Sect. 3).

In Sect. 2.1 we summarize the features of the AR, and describe
the sampling of the (ρ, ρ̇) space needed for the creation of the
manifold of variations (MOV), which is an extension of the line
of variations (LOV; Milani et al. 2005b; Milani & Gronchi 2010).
In Sect. 2.2 we present the so-called spider web (Tommei 2006),
to be used when a nominal orbit is available. Section 3 describes
how to compute the impact probability when an impactor is
found. In Sect. 4 we apply our method to the well-known cases
2008 TC3 and 2014 AA, and we show other examples to explore
the capabilities of the new method. Then in Sect. 5 we test our
method on new objects discovered by Gaia in the framework
of the Gaia alerts, and we show the points of strength of this
approach applied to Gaia observations. Section 7 contains our
conclusions and comments.

2. Sampling of the topocentric range and
range-rate space

2.1. Admissible region and systematic ranging

Even though the observations are too scarce, we are able to com-
pute the right ascension α, the declination δ, and their time
derivatives α̇ and δ̇, by fitting both angular coordinates as a
function of time with a polynomial model. These four quanti-
ties could be assembled together to form the attributable (Milani
& Knežević 2005):

A = (α, δ, α̇, δ̇) ∈ S1 × (−π/2, π/2) × R2 (1)

at a chosen time t̄, which could be the time of the first observation
or the mean of the observation times. The information contained
in the attributable leaves the topocentric distance ρ and radial
velocity ρ̇ completely unknown. We would have a full descrip-
tion of the topocentric position and velocity of the asteroid in
the attributable elements (α, δ, α̇, δ̇, ρ, ρ̇), if ρ and ρ̇ were known.
From then on, we use x = (A, ρ), where ρ = (ρ, ρ̇), to describe
the attributable elements.

Given an attributable, we define the AR as the set of all the
possible couples (ρ, ρ̇) satisfying the following conditions (see
Milani et al. (2004) for more mathematical details):
1. The object belongs to the solar system, and it is not a too

long period comet. We only consider the objects for which
the value of the heliocentric energy is less than −k2/(2amax),
where amax = 100 au and k = 0.01720209895 is the Gauss’
constant.

2. The corresponding object is not a satellite of the Earth, i.e.,
the orbit of the object has a non-negative geocentric energy
when inside the sphere of influence of the Earth, whose
radius is

RS I = a⊕ 3

√
µ⊕

3µ�
' 0.010044 au.

The AR is a compact set and can have at most two connected
components, which means that it could be represented as the
union of no more than two disjoint regions in the (ρ, ρ̇) space.
The AR usually has one component, and the case with two

Table 1. Various methods used to sample the AR in the (ρ, ρ̇) space with
respect to the values of the roots and the connected components of the
AR.

Roots AR Grid Sampling in ρcomponents

r1 <
√

10 au 1 50 × 50 Unif. in log10(ρ)
r1 ≥

√
10 au 1 50 × 50 Unif. in ρ

r1 > 0, r2 > 0, r3 > 0 2 100 × 100 Unif. in ρ

Notes. The sampling in ρ̇ is always uniform.

components indicates the possibility for the object to be distant
(perihelion q > 28 au). As shown in Milani et al. (2004), the
number of connected components depends on the number of the
roots of a polynomial resulting from condition number (1). This
polynomial cannot have more than three distinct real positive
roots. The AR has two connected components if there are three
roots and one component if there is only one root. It is worth
noting that the region defined by condition number (1) could
contain points with arbitrarily small values of ρ. The boundary
of the region given by condition (2) turns out to have two differ-
ent shapes: it can be formed just by the line of geocentric energy
equal to 0 (if it is entirely contained in the region 0 < ρ < RSI),
or by a segment of the straight vertical line ρ = RSI and two arcs
of the zero curve of the geocentric energy (for 0 < ρ < RSI).
We also discard the orbits corresponding to meteors that are too
small to be sources of meteorites, using the condition H ≤ Hmax,
where Hmax = 34.5 is the shooting star limit (Milani et al. 2004),
and H is the absolute magnitude. Given all these conditions, we
sample the AR with a finite number of points.

If a nominal solution does not exist, we make use of the
systematic ranging to scan the AR. We sample the AR in two
different ways, depending on the number of connected compo-
nents and the values of the roots (r1, r2 and r3, in ascending
order). Table 1 summarizes the conditions and grids used in the
(ρ, ρ̇) space. In particular, we compute a rectangular grid in the
range/range-rate space, with range as in Table 1, and range-rate
controlled by the AR equations (Milani et al. 2004). Neverthe-
less, since the AR has a shape dictated by a polynomial equation
and it is not a rectangle, we check the value of the heliocentric
energy for each grid point and we discard those not satisfying
condition (1). Orbits not satisfying condition (2) are discarded
as well, except when we compute the probability for the asteroid
to be a satellite of the Earth1.

The target function is defined by

Q(x) =
1
m
ξ(x)T Wξ(x),

where x = (A, ρ) are the fit parameters, m is the number of
observations used in the least squares fit, ξ is the vector of the
observed-computed debiased astrometric residuals2, and W is
the weight matrix. The choice of the weights for each observa-
tory is fundamental, and it has to take into account the debiasing
of the star catalog systematic errors, unless the astrometric

1 The object could be either an artificial satellite or an interplanetary
orbit in a temporary Earth satellite capture (Granvik et al. 2012).
2 In case there is a bias in the observations (Farnocchia et al. 2015a),
the residuals are computed following the classical definition of the
residuals as observed-computed, and also by subtracting the biases
vector.
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reduction has already been performed with an essentially bias-
free star catalog, for example the Gaia DR1 (Lindegren et al.
2016).

Given a subset K of the AR, we define the MOV M as the
set of the points (A∗(ρ0), ρ0) such that ρ0 ∈ K andA∗(ρ0) is the
local minimum of the function Q|ρ=ρ0

. In addition, the value of
the minimum RMS of the residuals is less than a given threshold
Σ. In general, the MOV is a two-dimensional manifold, such that
the differential of the map from the sampling space to M has
rank 2.

In the case of the systematic ranging, K is the AR, scanned
with a regular semi-logarithmic or uniform grid. For each sam-
ple point ρ0 = (ρ0, ρ̇0) we fix ρ = ρ0 and ρ̇ = ρ̇0 in the target
function, and then we search A∗(ρ0) by means of an iterative
procedure, the doubly constrained differential corrections. The
normal equation is

CA∆A = DA,

where

CA = BT
AWBA , DA = −BT

AWξ , BA =
∂ξ

∂A
.

We indicate as K′ the subset of K on which the doubly con-
strained differential corrections converges. In this way, the
sampling of the MOV is performed over K′.

For each point x on the MOV, we also compute a χ value

χ(x) =
√

m(Q(x) − Q∗), (2)

where Q∗ is the minimum value of the target function: Q(x∗) if
a reliable nominal solution exists, or the minimum value of Q(x)
over K′ otherwise.

When a nominal solution does not exist, the systematic rang-
ing is performed by a two-step procedure. The first iteration is
to compute a grid following the conditions in Table 1. Once we
obtain a first preliminary grid, we densify for a higher resolu-
tion. We select the minimum and the maximum value of ρ and
ρ̇ among all the values of the points for which we have a con-
vergence of the four-dimension differential correction, and the
value of χ is less than 5. We also compute the score with respect
to the first grid, and we use the value to select the grid for the
second step. The score gives us a first insight into the nature of
the object, even when the asteroid is not a potential impactor. We
define the score as a probability that an object belongs to various
classes (NEO, MBO, DO, and SO), where each class is defined
by the following conditions:

– NEO: near Earth object, an object with q < 1.3 au, where q
is the perihelion distance (in au).

– MBO: main belt object, belonging either to the main belt or
to the Jupiter Trojans. In particular we choose the conditions{

1.7 au < a < 4.5 au
e < 0.4 or

{
4.5 au < a < 5.5 au
e < 0.3 ,

where a is the semimajor axis (in au) and e is the eccentricity.
– DO: distant object, characterized by q > 28 au (e.g., a Kuiper

belt object, hereafter KBO).
– SO: scattered object, not belonging to any of the previous

classes.
If the object is close to being a NEO (the NEO-score is more
than 50%), we use a uniform grid in log10(ρ), otherwise we use a
uniform grid in ρ. Then we compute again the MOV on the new
and denser 100 × 100 grid.

Fig. 1. Example of spider web around the nominal solution ρ∗ = (ρ∗, ρ̇∗).
The points follow concentric ellipses corresponding to different values
of the parameter R. For each fixed direction (identified by θ), there is
one point on each level curve.

2.2. Spider web

Let us suppose that a nominal orbit was obtained by uncon-
strained differential corrections, starting from a preliminary orbit
as first guess, for instance, using the Gauss’ method, (Milani &
Gronchi 2010). Then, we can use the nominal solution as the
center of the subset of the MOV we are interested in, and we
can adopt a different procedure to scan the AR. If a nominal
orbit exists and the value of the geodesic curvature signal-to-
noise ratio (S/N) (Milani et al. 2008) is greater than 3, instead of
using a grid (Section 2.1), we compute a spider web sampling in
a neighborhood of the nominal solution (Tommei 2006). This is
obtained by following the level curves of the quadratic approxi-
mation of the target function used to minimize the RMS of the
observational residuals. The advantage of the use of the cobweb
is that, firstly, it is faster than the systematic ranging, and sec-
ondly it is more accurate in the cases for which we have a reliable
nominal solution already.

Let x∗ be the nominal solution with its uncertainty, repre-
sented by the 6 × 6 covariance matrix Γ. In a neighborhood
of x∗, the target function can be well approximated by means
of the quadratic form defined by the normal matrix C = Γ−1.
The matrix C is positive definite, hence the level curves of the
target function are concentric five-dimensional ellipsoids in the
six-dimensional orbital elements space. The level curves on the
(ρ, ρ̇) space are represented by the marginal ellipsoids, defined
by the normal matrix

Cρρ = Γ−1
ρρ ,

where Γρρ is the restriction of Γ to the (ρ, ρ̇) space. To sample
these curves we choose the maximum value σmax = 5 for the
confidence parameter. Then, for each level curve within the con-
fidence level σmax, we select the points corresponding to some
fixed directions. We initially create a regular grid of points in the
space of polar elliptic coordinates (R, θ), where 0 ≤ θ < 2π and
0 ≤ R ≤ σmax

3. Then we apply the following transformation to
each point of the grid, depending on the covariance matrix of the
nominal orbit and on the orbit itself:(
ρ
ρ̇

)
= R

(√
λ1 cos θ −

√
λ2 sin θ

√
λ2 sin θ

√
λ1 cos θ

)
v1 +

(
ρ∗

ρ̇∗

)
, (3)

where λ1 > λ2 are the eigenvalues of the 2 × 2 matrix Γρρ, v1
is the eigenvector corresponding to the greatest eigenvalue λ1,
and ρ∗ and ρ̇∗ are the range and range-rate values of the nominal
solution. Figure 1 shows an example of spider web sampling on
the (ρ, ρ̇) plane.

3 We assume that the nominal solution corresponds to the point (0, 0).
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3. Probability density computation

We obtain a probability distribution on the sampling space to
be used for several applications, such as the computation of the
impact probability or the score. We begin assuming that the
residuals are a Gaussian random variable Ξ, with zero mean and
covariance Γξ = W−1. Hence the probability density function on
the residuals space is

pΞ(ξ) = N(0,Γξ)(ξ) =

√
det W

(2π)m/2 exp
(
−

mQ(ξ)
2

)
=

√
det W

(2π)m/2 exp
(
−

1
2
ξT Wξ

)
. (4)

A possible approach to propagate the density (4) to the sam-
pling space uses the Bayesian theory to combine the density
coming from the residuals with a prior distribution. The a poste-
riori probability density function for (ρ, ρ̇) is given in Muinonen
& Bowell (1993) as

ppost(ρ, ρ̇) ∝ p(ξ(ρ, ρ̇)) · pprior(ρ, ρ̇),

where pprior is a prior distribution on the sampled space. Here-
inafter we report some possible choices for the prior probability.

– Jeffreys’ prior. This prior was used for the first time in
Muinonen et al. (2001). It takes into account the partial
derivatives of the vector of the residuals with respect to
the coordinates (ρ, ρ̇). Jeffreys’ prior tends to favor orbits
in which the object is close to the observer, because of the
sensitivity of the residuals for small topocentric distances.
Granvik et al. (2009) made versions of the code, which uses
Jeffreys’ prior, publicly available for the first time.

– Prior based on a population model. This approach requires
the computation of the prior distribution as posterior of
another prior, which is selected as proportional to ρ2 by geo-
metric considerations on the Cartesian space of position and
velocity.

– Uniform distribution. Uniform distribution in the (ρ, ρ̇)
space.

Farnocchia et al. (2015b) gives a detailed description of all these
different possible choices, and they also analyze how the impact
probabilities change according to different prior distributions.
They conclude that the uniform distribution is a good choice
for an a priori probability density function because it repre-
sents a good compromise between a simple approach and the
identification of potential impactors.

Hereinafter we propose a new method to propagate the prob-
ability density function pΞ(ξ) back to the sampling space. This
method is a rigorous propagation of the density function accord-
ing to the probability theory and does not use any a priori
assumption. The main idea is that we propagate the probability
density function from the residual space to the orbital element
space (more precisely, on the MOV), and then to the sampling
space, according to the Gaussian random variable transforma-
tion law. The main difference in using this approach instead of
the uniform distribution, is that we compute the Jacobian deter-
minant of the transformation and it is not equal to 1, which is the
value chosen by Farnocchia et al. (2015b).

We define the following spaces:
– S is the space of the sampling variables. It changes depend-

ing on the case we are considering: S = R+ × R if the
sampling is uniform in ρ, S = R2 if the sampling is uniform
in log10 ρ, and S = R+ × S1 in the cobweb case.

– K′ is the subset of the points of the AR such that the doubly
constrained differential corrections give a point on the MOV.

– M is the MOV, a two-dimensional manifold in the six-
dimensional orbital elements space X.

– Rm is the residuals space. The residuals are a function of
the fit parameters: ξ = F(x), with F : X → Rm differen-
tiable, and we define the manifold of possible residuals as
V = F(X) (Milani & Gronchi 2010, Sect. 5.7).

Without loss of generality, we can assume that

pΞ(ξ) = N(0, Im)(ξ) =
1

(2π)m/2 exp
(
−

1
2
ξTξ

)
, (5)

where Im is the m × m identity matrix. As explained in Milani
& Gronchi (2010, Sect. 5.7), this is obtained by using the nor-
malized residuals in place of the true residuals; biases due to
star catalog can also be removed while forming the normalized
residuals. With this technique, the probability density function
becomes normalized to a standard normal distribution. Thus
from now on, we use ξ to indicate the normalized residuals and
the function F maps the orbital elements space to the normalized
residuals space.

Then we consider the following chain of maps (defined in A)

S
fσ
−→ R+ × R ⊇ K′

fµ
−→ X ⊇ M

F|M
−−−→ V

and we use their Jacobian matrices to compute the probability
density function on S . Let s be the variable of the sampling space
S , and let S be the corresponding random variable. We use the
compact notation χ2(s) to indicate χ2(x(ρ(s))). The probability
density function of S is

pS(s) =

exp
(
−
χ2(s)

2

)
det Mµ(ρ(s)) det Mσ(ρ(s))∫

f −1
σ (K′)

exp
(
−
χ2(s)

2

)
det Mµ(ρ(s)) det Mσ(ρ(s)) ds

(6)

where Mµ is the 2 × 2 matrix associated with fµ (considered as
tangent map to the surface M), and Mσ is the 2 × 2 Jacobian
matrix of fσ. The derivation of (6) is given in A; explicit expres-
sions for the Jacobian determinants are provided in A.2 and A.3,
respectively.

It is worth noting that we limit our analysis to solar system
orbits (condition number (1) of Sect. 2.1), because interstellar
objects are very rare. As a consequence, we use a Bayesian the-
ory with a population limited to the solar system, and all the
probability computations we describe are actually conditional
probabilities to the AR, which is even a subset of the solar
system.

3.1. Impact probability computation

Each point on the MOV can be thought as orbit compatible with
the observations, and we call each point a virtual asteroid (VA).
We propagate the VAs into the future, currently for 30 days from
the date of the observations and we search for virtual impactors
(VIs), which are connected sets of initial conditions leading to
an impact (Milani et al. 2005a). If a VI has been found on the
modified target plane (MTP; Milani & Valsecchi 1999), it is
associated with a subsetV ⊆ S of the sampling space, and hence
its probability is given by

P(V) =

∫
V

pS(s) ds
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Table 2. Conditions on impact probability (IP) and arc quality to assign
the impact flag to an object.

Impact flag Condition

0 IP ≤ 10−6

1 10−6 < IP ≤ 10−3

2 10−3 < IP ≤ 10−2

3 IP > 10−2 and no significant curvature
4 IP > 10−2 and significant curvature

=

∫
V

exp
(
−
χ2(s)

2

)
det Mµ(ρ(s)) det Mσ(ρ(s)) ds∫

f −1
σ (K′)

exp
(
−
χ2(s)

2

)
det Mµ(ρ(s)) det Mσ(ρ(s)) ds

. (7)

If for a given object we find impacting solutions, we assign an
impact flag, which is an integer number related to the compu-
tation of the impact probability, to the object. The impact flag
depends on the impact probability and on the arc curvature, as
shown in Table 2. An arc has significant curvature if χ2 > 10,
where χ is the chi-value of the geodesic curvature and the accel-
eration (as defined in Milani et al. (2007)). The impact flag can
take the integer values from 0 to 4: 0 indicates a negligible
chance of collision with the Earth, whereas the maximum value
4 expresses an elevated impact risk (≥1%). The impact flag is
conceived as a simple and direct communication tool to assess
the importance of collision predictions and give priority to the
follow-up activities.

The goal for a system dedicated to imminent impactors is to
detect all the possible VIs down to a probability level of about
10−3, called completeness level (Del Vigna et al. in prep.,). To
reach the completeness level of 10−3 for our system, we neglect
the terms that are of smaller orders of magnitude in Eq. (7).
This allows us to consider the VAs with a χ-value less than 5.
If χ = 5 then exp(−χ2/2) ' 10−5.4, and the corresponding term
is negligible. Moreover, the choice χ < 5 is valid for the score
computation because we are interested in a score accuracy of
about 10−2.

4. Results

We are setting up a service dedicated to scanning the Minor
Planet Center NEO Confirmation Page4 (NEOCP). The goal is to
identify asteroids as NEOs, MBOs, or distant objects to be con-
firmed or removed from the NEOCP, and to give early warning of
imminent impactors, to trigger follow-up observations immedi-
ately. The software used to produce these results is a new version
of the OrbFit Software version 5.05.

The service involves the following steps, based on the algo-
rithm presented in Sects. 2.2 and 3.

– Scanning of the NEOCP every two minutes. New cases or
old cases just updated are immediately run.

– Computation and sampling of the AR using a two-
dimensional representation in the (ρ, ρ̇) plane with a either
grid or a spider web.

– Computation of the MOV, obtaining a set of VAs.
– Propagation of the VAs in the future (currently for 30 days).

4 http://www.minorplanetcenter.net/iau/NEO/toconfirm_
tabular.html
5 http://adams.dm.unipi.it/orbfit/

– Projection on the MTP, searching for VIs.
– If VIs exist, computation of the IP.
– Computation of the score.

The time required to run one target strictly depends on the char-
acteristics of the object, but usually it is between 15 and 20
minutes. When predicting possible imminent impacts, one of
the most important requirements to fulfill is to minimize the
number of unjustified alarms. We denote as nonsignificant cases
the objects for which there are less than three observations or
the arc length is less than 30 minutes (see also Sect. 5), unless
there exists a nominal solution with a geodesic curvature S/N
greater than 1. The classification of a case as nonsignificant does
not mean we skip the computation. We perform all the steps of
the algorithm in any case and assign the score and impact flag.
Nevertheless, being nonsignificant automatically decreases the
priority of the object in case of an alarm.

Unfortunately, these techniques are not enough to remove
all the spurious cases. They usually occur when the astrometry
is either known to be erroneous or noisy, or anyway not reli-
able. We cannot solve this problem, and we acknowledge that
the astrometric error models based on large number statistic are
not sufficient to distinguish erroneous and accurate astrometry in
a small sample (see comments in Sect. 7).

We test our algorithm on the two well-known cases of NEAs
that have impacted the Earth a few hours after the discovery,
namely 2008 TC3 and 2014 AA. We already pointed out that the
choice of the weights is very important in these cases. We choose
the same weights in order to be able to compare the results with
Farnocchia et al. (2015b),. Furthermore, we also select some
cases among the objects that would not be impacted to show the
importance of the score computation as well.

4.1. Graphical representation of the results

We present our results with plots showing the AR and its
sampling. Hereinafter we describe the color code present in our
figures. Concerning the AR, we make use of the following lines.

– The red solid line represents the level curve of the helio-
centric energy equal to −k2/(2amax). Namely, it is the outer
boundary of the AR, corresponding to the boundary of the
region defined by condition (1) in Sect. 2.1.

– The green dashed line shows where the geocentric energy
is equal to 0, also taking into account the condition about
the radius of the Earth sphere of influence, as discussed in
Sect. 2.1

– The magenta dashed line (which is parallel to the range-rate
axis) represents the shooting star limit condition.

– The magenta solid lines (which are parallel to the range-rate
axis) represent different values of the absolute magnitude.

We now provide a description of the colors used for the sampling
points. No point is denoted if the four-dimensional differential
corrections does not converge because the point does not belong
to the MOV.

– The dots are indicated in blue if χ ≤ 2, and green if
2 < χ ≤ 5.

– The dots are indicated in black if χ > 5.
– In case a VI has been found, we show the points representing

possible impacting orbits with red circles.
– The orange star represents the point with the minimum
χ2 value.

4.2. Asteroid 2008 TC3

2008 TC3 was discovered by Richard A. Kowalski at the Catalina
Sky Survey on October 7, 2008. The object was spotted 19 hours
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Fig. 2. Grid sample of the (ρ, ρ̇) space for the first 4 observations (top
panel) and spider web for the first 7 observations (bottom panel) of
2008 TC3.

Table 3. Results of systematic ranging applied to 2008 TC3 and
2014 AA.

Name # Obs. Time span Sampling Score IP(min) Grid/Spider NEO MBO DO
2008 TC3 4 43 log10(ρ) - grid 100% 0 0 3.6%
2008 TC3 7 99 Spider 100% 0 0 99.7%
2014 AA 3 28 log10(ρ) - grid 100% 0 0 3.0%
2014 AA 7 28 Spider 100% 0 0 100.0%

Notes. The columns contain the name of the object, number of observa-
tions used, time span covered by the observations, characteristic of the
sampling used to compute the MOV (grid or spider web), score of the
object (NEA, MBA or Distant), and impact probability (IP).

before the impact, and it is the first body to be observed and
tracked prior to falling on the Earth. After the discovery, hun-
dreds of astrometric observations were submitted to the Minor
Planet Center (MPC) and these observations allowed the com-
putation of the orbit and the prediction of the impact. We use the
first tracklet composed by four observations, and then the first
two tracklets (seven observations) to ascertain whether we could
predict the impact.

We compute a uniform densified grid in log10(ρ) (Fig. 2,
top panel) where we consider only the first four observations,
while we are able to compute a reliable nominal orbit, and the
consequent spider web using seven observations (Fig. 2, bottom
panel). Table 3 shows that with four observations and using the

Fig. 3. Grid sample of the (ρ, ρ̇) space for the first 3 observations (top
panel) and spider web for the whole set of 7 observations (bottom panel)
of 2014 AA.

grid we are able to predict a possible impact of the object with
the Earth with an impact probability of '3.6%, and the score of
the object to be classified as a NEA is 100%. This would have
produced an alert for the observers that could have immediately
followed up the object. With seven observations we can confirm
the certainty that the asteroid is a NEA (score = 100%), and the
impact probability increases to 99.7%.

4.3. Asteroid 2014 AA

2014 AA was discovered by Richard A. Kowalski at the Catalina
Sky Survey on the New Year’s Eve of 2014. The object was dis-
covered 21 hours before the impact, but it has not been followed
up as 2008 TC3 because of the exceptional night in which it
has been spotted. We initially used the first tracklet composed
of three observations, and then the whole set of seven observa-
tions to test whether we could have predicted the impact with our
method.

These two examples have several analogies. We compute a
uniform densified grid in log10(ρ) with the first tracklet, which
is only 3 observations (Fig. 3, top panel), and we are able to
compute a reliable orbit and the consequent spider web only
with seven observations (Fig. 3, bottom panel). Table 3 shows
that using the first tracklet only, we are able to predict a possi-
ble impact with the Earth with an impact probability of '3.0%,
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Fig. 4. Grid sample of the (ρ, ρ̇) space for the first 4 observations of
2014 QF433 (top panel) and an enlargement of the second component
(bottom panel). The black star in the second component represents the
orbit of the object computed with all the available observations.

and the NEA score of the object is 100%. Again, this would
have produced an alert for the observers that could have imme-
diately followed up the object. As in the previous case, with
the second tracklet we confirm both that the asteroid is a NEA
(score = 100%) and the collision, since the impact probability
increases to 100%.

4.4. Asteroid 2014 QF433

The previous examples show how systematic ranging is capable
of identifying imminent impactors. Although this is one of the
most important applications of this technique, systematic rang-
ing is also essential in the first short arc orbit determination
process.

Asteroid 2014 QF433 was discovered by F51 - Pan-STARRS
1, Haleakala on August 26, 2014. The first four observations
were posted on the NEO confirmation page, with the temporary
designation TVPS7NV. This asteroid has been on the NEOCP
since September 5, 2014. On that day (with 18 observations)
it was confirmed to be a distant object by the Minor Planet
Center.

Figure 4 shows the results of systematic ranging on this aster-
oid with only four discovery observations and 51 minutes of arc
length. In this case the AR has two connected components, indi-
cating the possibility that object is distant. The values of the
three positive roots of equation of degree 6 are r1 = 1.103 au,

r2 = 40.072 au, and r3 = 59.786 au. The attributable is

A = (α, δ, α̇, δ̇)
= (5.7358902,−0.3008327,−3.35275 × 10−4,

− 9.94065 × 10−5), (8)

with α and δ in radians and α̇ and δ̇ in radians per day. The two
plots in Fig. 4 clearly show that the object is distant, since almost
all the grid points corresponding to the MOV lie in the second
connected component. As a consequence, the cumulative score
for the Distant and Scattered classes is 99%.

As a further validation, we take the orbital elements of this
asteroid from the AstDyS database6, and we compute the range
and the range-rate at the epoch of the attributable. The result is
shown in the bottom panel of Fig. 4: the black star represents
the orbit of 2014 QF433 computed with all the available obser-
vations and is in perfect agreement with the systematic ranging
sampling.

4.5. Asteroid 2017 AE21

The case of 2017 AE21 shows the importance of score compu-
tation. This object is worthy of attention needs follow up even
though it is not an impactor; for instance, it could be a potential
NEA.

Asteroid 2017 AE21 was discovered by F51 - Pan-STARRS
1, Haleakala on January 3, 2017. It appeared on the NEOCP as
a tracklet of three observations spanning 30 minutes with the
temporary designation P10yBuc. This object was confirmed to
be a NEA on January 24, 2017, when it had five observations.
With the first tracklet, our system produces an impact flag of
2, indicating a modest impact risk and an impact probability
IP = 2 × 10−3. Moreover, the NEO score is 92%, which encour-
aged some follow up observations of the object. The top panel of
Fig. 5 shows the result when using the first tracklet only. We do
not have any reliable nominal orbit to use, and as a consequence
we adopt the grid sampling. The portion of the grid correspond-
ing to low χ values (blue points) is vey wide, indicating a great
uncertainty in the orbit determination, and the uncertainty region
also contains impacting solutions.

With just two additional observations, the differential cor-
rections still fail to compute a reliable nominal orbit, but now
the good portion of the grid is located in a small subregion of
the AR (see Fig. 5, bottom panel). In this case the uncertainty
region does not contain impacting orbits, thus we get an impact
flag of 0, where IP = 0, whereas the NEO score increases to
100%. As a consequence, the new observations contradicts the
low probability VI, but the follow-up suggestion coming from
the high 98% NEO score of the first run is reliable.

4.6. NEOCP object P10vxCt

As we stated in the introduction of this section, noisy astrometry
can be the cause of unjustified alarms. In fact, if an object has a
single tracklet of few observations and one of these is erroneous,
the arc usually shows a significant curvature, implying that the
object seems very close and fast moving. Most likely, it could
be classified as an immediate impactor with very high impact
probability.

Object P10vxCt was spotted by F51 - Pan-STARRS,
Haleakala on June 8, 2016. The first time it appeared on the
6 Asteroid Dynamics Site, available at
http://hamilton.dm.unipi.it/astdys/
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Fig. 5. Grid sample of the (ρ, ρ̇) space for the first 3 observations
(top panel) and for the whole set of 5 observations (bottom panel) of
2017 AE21. In both cases we do not have any reliable nominal orbit to
use, and as a consequence we adopt the grid sampling.

NEOCP it had a tracklet with three observations spanning about
44 minutes (Table 4, above). It has never been confirmed, but it is
in any case an important example to show the risk posed by noisy
astrometric data. With the first three observations, our system
computes a nominal solution compatible with a very close orbit,
resulting in a spider web sampling over a small subset of the
AR (see Fig. 6, top panel). A very large percentage of the MOV
orbits are solutions with possible impacts and it results in an
impact probability of 99.2% and impact flag 4, considering the
significance of the curvature. The second batch of observations
consists of four positions, three of which are a remeasurement
of the first tracklet obtained from the discovery images of the
object, plus an additional observation. With this new astrometry,
the impact was ruled out and the object was removed from the
NEOCP.

To show the role of the remeasurements in the impact
removal, we only consider the three remeasured observations
(see Table 4, below). The second observation in the first tracklet
was badly determined because it was off by about 3 arcsec from
the corresponding observation in the second batch. The effect
of this shift can be seen in the curvature parameters κ (geodesic
curvature) and η̇ (acceleration). For the first tracklet we have

κ1 = (0.0010073 ± 0.0001015) and η̇1 = (0.0003218 ± 0.0001013),
(9)

Table 4. Astrometric data for NEOCP object P10vxCt.

Date (UTC) α δ R Code
2016-06-08.29327 13 13 16.962 −20 25 56.90 21.0 F51
2016-06-08.30357 13 13 12.688 −20 28 31.36 20.9 F51
2016-06-08.32416 13 13 04.699 −20 33 46.35 21.0 F51
2016-06-08.293273 13 13 16.963 −20 25 56.53 20.3 F51
2016-06-08.303571 13 13 12.856 −20 28 33.24 20.5 F51
2016-06-08.324159 13 13 04.683 −20 33 46.33 20.4 F51

Notes. First tracklet with 3 observations (above), and remeasurement of
the first tracklet from the discovery images (below).

Fig. 6. Grid sample of the (ρ, ρ̇) space for the first 3 observations (top
panel) and for their remeasurement (bottom panel) of P10vxCt.

Fig. 7. Two batches of observations reported in Table 4, for NEOCP
object P10vxCt. The red line represents the originally submitted track-
let, whereas the blue line the remeasured tracklet. The higher curvature
of the first arc with respect to the second is clear.
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while for the remeasured tracklet
κ2 = (0.0000649±0.0006749) and η̇2 = (−0.0000430±0.0006750),

(10)

which are both significantly lower than the values obtained for
the first, not remeasured, tracklet (see Fig. 7 for a graphic rep-
resentation of the two arcs). Moreover, as we can see from
the curvature uncertainties, both curvature components are not
significantly different from 0. As a consequence, the impact solu-
tion is sharply downgraded with the remeasured observations
alone; a nominal solution cannot be computed anymore, result-
ing in a grid sampling of the AR, and the impact orbits are a very
small fraction of the MOV orbits (see Fig. 6, right panel). Thus
the impact probability lowers to about IP = 7.5 × 10−5, with an
impact flag of 1.

Providing remeasured observations is not the only way to
solve the problem caused by bad astrometry. The second obser-
vation is not as good as the other two, and let us suppose this
information were provided along with the observation itself. In
this case, we could have properly down-weighted the second
observation to take into account the additional information, and
the case would have been solved. To prove this claim, we assign
a formal uncertainty of 3 arcsec to both the right ascension
and the declination of the second observation. With this choice,
the impact solution still remain, but with an impact probability
IP = 4.4 × 10−4. Until this additional metadata will be provided
together with the observations, cases like the one presented here
can be solved only by a manual intervention after all the com-
putations (remeasurement) or by a fast follow-up (see Sect. 7 for
general comments on this issue).

5. ESA Gaia mission and short arc orbit
determination

The ESA Gaia mission, which is currently surveying the sky
from the Sun-Earth L2 Lagrangian point, is providing astrom-
etry of stars and asteroids, at the submilliarcsec accuracy (Prusti
2012) down to magnitude V = 20.7. The spin of the satellite is
6 h, and it operates in a continuous scanning mode. The satellite
has two lines of sight that are separated by an angle of 106.5◦
in its scanning direction. The continuous mode of observation
implies targets are not pointed at, but are rather passing in front
of Gaia fields of view. Such crossings are called transits. Over
five years of nominal mission duration, the objects observed by
Gaia will have a coverage of 80−100 observations for an average
direction (60−70 for the ecliptic Tanga et al. 2016)

The Gaia focal plane is a large Giga-pixel array of 106 CCDs.
The CCDs are organized as follows:

– The first two CCD strips are devoted to source detection.
This is the instrument called Sky Mapper (SM).

– The following nine strips are astrometric CCDs, i.e. the
astrometric field (AF).

– Other CCD strips are devoted to low resolution spectro-
photometry, called red and blue photometry (RP and BP),
and high resolution spectroscopy (RVS), which is not con-
sidered for asteroid studies.

Each solar system object (SSO) transit is composed, at most,
by 10 astrometric observations (AF and SM instruments) dis-
tributed over 50 seconds. The Data Processing and Analy-
sis Consortium (DPAC) has, as part of its activities, source
identification and further processing performed on the ground. In
this context, the Coordination Unit 4 (CU4) performs the anal-
ysis of objects deserving a specific treatment as SSOs (PI: P.

Tanga). The DPAC CU4 has implemented two pipelines for solar
system processing (Tanga et al. 2007; Mignard et al. 2007):

– SSO-ST is the solar system short-term processing, provid-
ing a first, approximate orbit for the recovery of objects
potentially discovered by Gaia. A ground-based follow-up
network (Gaia-FUN-SSO; Thuillot et al. 2014) is currently
operating, realizing follow-up observations of Gaia potential
discoveries from the ground;

– SSO-LT is the solar system long-term processing, which
runs for the data releases, performing a more sophisticated
data reduction with the best possible instrument calibration
and astrometric solution.

5.1. Short-term processing

The solar system short-term processing is based on few transits
of the object (at least three), covering a time span of few hours
(at least six). At now, the astrometry for the alerts is based on a
preliminary calibration, which is not the same calibration used
for long-term processing. As a result, the error model required
by these observations is not different from that already used for
the ground-based cases with the best astrometry. We uniformly
weight (0.1 arcsec) both right ascension and declination.

If the detected source is not successfully linked with a
known solar system object, then it is potentially a discovery.
It is thus crucial to predict a possible sample of orbits for the
ground-based follow-up network to certify the discovery. In the
framework of the CU4 data treatment, this is performed by
random-walk statistical ranging, which has been developed by
Muinonen et al. (2016). This Java code currently produces the
orbital data for Gaia alerts in the SSO-ST pipeline.

We take the opportunity of the availability of the method
presented in Sect. 2 to validate independently the results of the
SSO-ST pipeline.

The impact probability computation, which is a key feature
when we look for possible impactors, is not so essential when
we have to deal with Gaia short-term observations. We expect
indeed that among the objects that Gaia will discover, there will
be a large percentage of Main Belt Asteroids, few Near Earth
Asteroids, and it would be very surprising if it could even dis-
cover imminent impactors (Carry 2014). On the other side, the
use of the double grid or of the cobweb is essential in this case.

5.2. Results

The same service presented in Sect. 4 to scan the NEO Confirma-
tion Page, was ran on possible Gaia discoveries. The graphical
representation of the results is identical to that given in Sect. 4.1.
We also use the same version of the OrbFit software cited in
Sect. 4, which we adapted to deal with the different input given
by Gaia observations7.

We present two particular objects, which at the time seemed
to be possible Gaia discoveries, but whose observations have
been linked to ground-based observations submitted earlier in
time.

The first object that could have been discovered by Gaia on
December 29, 2016 is a Main Belt Asteroid. It has been identified
as g0T015. It has four Gaia transits that cover a time span of
'16 hours.

We apply systematic ranging (using the two grids) on the
observations and the results are summarized in Fig. 8. The

7 All the alerts are available at https://gaiafunsso.imcce.fr/.
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Fig. 8. Admissible region and grid sample of the (ρ, ρ̇) space for the
Gaia object g0T015. Top panel: Grid sample of the (ρ, ρ̇) space for
the Gaia object g0T015. Bottom panel: Zoom-in of the second grid is
shown.

object has then been followed up by the Observatoire de Haute-
Provence (OHP) for two consecutive nights (January 3-4, 2017),
and the observations have been reported to the Minor Planet
Center. The object has been recognized as a MBO and obtained
the provisional designation 2017 AD17. This could have been the
first Gaia discovery, if it had not been linked to few observations
from F51 Pan-STARSS submitted earlier (March 2014).

To be sure that the observed object was the same potentially
discovered by Gaia, we consider as an initial guess the elements
corresponding to the point with the minimum value of χ2, and
we perform an orbit determination process including the outlier
rejection procedure (Milani & Gronchi 2010).

Figure 9 shows that follow-up observations from the OHP
and Gaia observations match, according to the orbit selected
as first guess. The residuals for the OHP (blue points) are
much larger than those obtained from Gaia observations (red
points), as expected. The weights used in this case are uniform in
right ascension (RA) and declination (DEC), and correspond to
0.1 arcsec. The result also shows a high correlation (close to 1)
between RA and DEC, which is typical for Gaia observations
because of its scanning law.

The second Gaia object is g1j0D7, again a MBA. It has been
observed by Gaia on September 2, 2017. It has seven transits,

Fig. 9. Residuals in right ascension and declination. Values in arcsec
were obtained as a result of the orbit determination applied to the whole
set of observations: Gaia (red points) and ground based (blue points)
for the Gaia object g0T015 (2017 AD17).

which cover a time span of ∼22 hours. The object has follow-up
observations from the Abastuman Observatory (MPC code 119)
during the night between September 10 and September 11. This
object obtained the MPC preliminary designation 2017 RW16,
but was then linked to the asteroid 2006 UL189 discovered by
the Catalina Sky Survey on June 2005. Figure 10 shows the result
of the systematic ranging when we use only Gaia observations.
Again, we choose the point with the minimum value of the χ2

as starting point, and we use it as preliminary point. We then
perform a differential corrections least-squares fit, and we obtain
the residuals (see Fig. 11), as described in the previous case.

6. Future perspectives

Gaia alerts runs daily and they need a large effort to collect
follow-up observations from ground. With the method and the
software described we validated the already existing Java code
written for the alert pipeline. Moreover, our approach can also
be used to confirm the discoveries by computing an orbit using
both Gaia and ground-based observations.

Then, when the accuracy for the short term improves, we
will also be able to run the systematic ranging on less than three
transits, given the correct error model to the observations. It is
worth noting that the concept of short arc strongly depends on
the concept of curvature (see Sects. 2.2 and 4), which is related
not only to the time interval, but also to the accuracy of the
observations themselves.

The score computation represents a key feature in the Gaia
frame (as already pointed out in Sect. 5.1), but it will also be very
useful in future applications, such as the ESA Euclid mission.
Euclid is an ESA mission with the aim of mapping the geometry
of the dark universe down to VAB = 24.5; the Euclid launch is
scheduled for 2020. While conducting its primary goal survey,
Euclid also observes asteroids during his whole lifetime, and a
Solar System Working Group has been created within the Euclid
consortium.

Euclid will observe at solar elongation ∼91◦, and each SSO
will be imaged 16 times over 67 minutes (Carry 2018 more pre-
cisely, 95% of them 12 times, and 50−60% of them 16 times).
With a Hubble-like angular resolution, astrometry will be very
good, at least at the same level of the best observatories on
ground (like Mauna Kea), or at the level of the short term accu-
racy of the Gaia alerts as it is now. The estimate accuracy is
around 100 mas. While the southern sky will be repeatedly cov-
ered to the same depth by LSST (LSST Science Collaborations
& LSST Project 2009), only Euclid will systematically cover
high declinations and have a strong potential for discoveries. For
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Fig. 10. Admissible region and grid sample of the (ρ, ρ̇) space for the
Gaia object g1j0D7. Top panel: Grid sample of the (ρ, ρ̇) space for
the Gaia object g1j0D7. Bottom panel: Zoom-in of the second grid is
shown.

Fig. 11. Residuals in right ascension and declination. Values in arcsec
were obtained as a result of the orbit determination applied to the whole
set of observations: Gaia (red points) and ground based (blue points)
for the Gaia object g1j0D7.

each, having the score will be crucial to select the asteroids the
will trigger follow-up observations or not.

7. Conclusions

One of the main issues in the impact hazard assessment for
imminent impactors is given by the computation of the impact

probability. The main results of this article are a new algorithm to
propagate the probability density function from the space of the
astrometric residuals to the MOV, which is a geometric device
to sample the set of possible orbits that are available even after
a very short observed arc. In previous works, this computation
was supported with an a priori number density of asteroids.
Our computation is complete, rigorous, and uses no a priori
hypothesis.

Does this new algorithm solve the problem of assessing the
risk of imminent impacts from a freshly discovered asteroid, for
which observations are limited to 1–2 tracklets? By using the
AR and one of our grid sampling methods, we have shown how
to approximate a probability integral on the portion of the MOV
leading to an imminent impact, if it is found. However, we need
to check three conditions to accept this integral as IP.

First, the probability density on the space of residuals needs
to be based upon a probabilistic model of the astrometric errors,
taking into account the past performances of the observato-
ries. Second, the observations used in the computation must
be typical of the observatory; even the best astronomical pro-
gram produces a comparatively small subset of the so-called
faulty observations that have errors much larger than the usual
observations. Third, we should assume that the small sample of
observations has statistical properties, such as mean and standard
deviation (STD), close to those of the full distribution.

The first hypothesis is reasonable in that a lot of work
has been developed in the last 20 years to produce astrometric
error models for asteroid observations (see Carpino et al. 2003;
Chesley et al. 2010; Baer et al. 2011; Farnocchia et al. 2015a).
These models are not perfect, but they represent an increasingly
reliable source of statistical information. The second hypothe-
sis is not trivial: the current format for asteroid observations
does not contain sufficient metadata to discriminate weak obser-
vations from the good observations. The full adoption of the
new Astrometric Data Exchange Standard (ADES8), approved
by the IAU in 2015, will provide information such as S/N, tim-
ing uncertainty, and so on, allowing adaptation of the weighting
of individual observations. The example of P10vxCt shows how
just one lower quality observation can completely spoil the orbit
results, generating a false impact alarm. This can be avoided
either with remeasuring by the observer or by the orbit computer,
provided such down-weighting is supported by the metadata.

The third hypothesis is the most troublesome. Assuming that
the probability density of an astrometric error model is a per-
fect statistical description, then by the law of large numbers
a large enough sample of N observations shall have approxi-
mately the same statistical properties of the model, with the
differences going to zero for N → +∞ (law of large numbers).
Unfortunately, N = 3, 4, 5 is not large enough for the law of
large numbers to apply. For instance, a tracklet with N = 3 obser-
vations can have all the observations in one coordinate with
errors >2.5STD; this statistical fluke would be very rare, occur-
ring in a little more than 1 tracklet over 1 million. Still, if a
large asteroid survey submits to the MPC more than one million
tracklets per year, such a fluke may occur about once a year,
whereas the discovery of imminent impactors is currently more
rare (2 in 10 years). Detection of a rare astronomical event cannot
be a priori discriminated from rare statistical events.

The tests on real cases discussed in this paper, and many
more from the NEOCP, convinced us that our algorithm com-
putes a reliable impact probability when the impact actually

8 It is available at http://minorplanetcenter.net/iau/info/
IAU2015_ADES.pdf
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occurs. Nevertheless, we cannot show that our algorithm is
immune from so-called false alarms. These are not false in the
sense of an incorrect computation, or even worse a malicious
disinformation; rather they are statistical flukes that cannot be
avoided because of lack of information (hypothesis 2) and the
need to use statistics on a small sample (hypothesis 3). The ques-
tion is what should be done to mitigate the damage by these false
alarms, given that we cannot avoid disseminating these false
alarms; otherwise, how could we disseminate a true alarm when
we see one?

The only answer is to have a follow-up chain that does not
waste resources. The discoverers could either remeasure or fol-
low up in the short term, such as one hour after discovery, when
the cases are announced as possible impactors. Other telescopes
should be available to perform follow up to avoid improper use of
survey telescopes for a less demanding task. The ideal solution
should be the availability of a Wide Survey, capable of cover-
ing the entire dark sky every night and of detecting, for example,
an asteroid with absolute magnitude H = 28 at 0.03 au distance
(near opposition). Then the same asteroid would be recovered by
the survey the next day, before the impact, and without the need
for auxiliary follow up.
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Appendix A: Probability density function
computation

In this appendix we give the mathematical details for the deriva-
tion of Eq. (6) for the probability density function on the
sampling space S .

A.1. From the residuals space to the MOV

The first step of the procedure is the classical propagation of the
probability density function from the normalized residuals space
to the orbital elements space. From Eq. (5) we recall that we start
from the following density:

pΞ(ξ) = N(0, Im)(ξ) =
1

(2π)m/2 exp
(
−

1
2
ξTξ

)
.

We consider a point x0 ∈ M, the corresponding image
ξ0 = F(x0) ∈ V and the tangent application DF(x0) : Tx0X →

Tξ0 V . Later we discuss the choice of the point x0. As proved
in (Milani & Gronchi 2010, Sect. 5.7), we obtain a probability
density function on the orbital elements space given by

pX(x) = N(x0,ΓX)(x),

where ΓX = P(x0)−1(P(x0)−1)T is the covariance matrix result-
ing from the transformation of Gaussian random variables under
a linear transformation. Moreover, the normal matrix of the
variable X is

P(x0)T P(x0) = B(x0)T B(x0) = C(x0),

namely the normal matrix of the constrained differential correc-
tions leading to x0, computed at convergence. Hence

pX(x) =

exp
(
−

mQ(x)
2

)
| det P(x0)|∫

Tx0X

exp
(
−

mQ(y)
2

)
| det P(x0)| dy

=

exp
(
−
χ2(x)

2

)
∫

Tx0X

exp
(
−
χ2(y)

2

)
dy

having used Eq. (2), that is mQ(x) = mQ∗ + χ2(x). Concerning
the choice of x0 we proceed as follows: if a reliable nominal
solution x∗ exists, we set x0 = x∗; if not, we select as x0 the sam-
ple orbit having the minimum value of the target function. This
choice is also coherent with the χ computation given by Eq. (2).

A.2. From the MOV to the AR

We can now compute the determinant of the map fµ. Let Mµ be
the 2 × 2 matrix representing the tangent map between K′ and
M. fµ is a differentiable function, with Jacobian matrix

B = D fµ =
dx
dρ

=


∂A∗

∂ρ

∂A∗

∂ρ̇

1 0
0 1

 =


∂A∗

∂ρ
I2

 .

We now consider ρ0 ∈ K′ such that fµ(ρ0) = x0. The matrix
B(ρ0) has rank 2, thusM is smooth in the neighborhood of each
of its points. We can linearize in ρ0, obtaining the tangent map

B(ρ0) = D fµ(ρ0) : Tρ0 K′ → Tx0M,

which is a linear map between two two-dimensional spaces. We
use a rotation matrix R in the orbital elements space, such that

R(x − x0) =

(
x′
x′′

)
⇒ RT

(
0

x′′
)

+ x0 ∈ Tx0M.

This means that x′′ parametrizes Tx0M. In these coordinates the
linearized map has a simple structure:

RB(ρ0) =

(
0

A(ρ0)

)
,

with A(ρ0) an invertible 2 × 2 matrix. By using that R is
orthogonal, the following relation holds:

MT
µ Mµ = (RB(ρ0))T (RB(ρ0)) = B(ρ0)T (RT R)B(ρ0)

= B(ρ0)T B(ρ0) = I2 +

(
∂A∗

∂ρ
(ρ0)

)T
∂A∗

∂ρ
(ρ0),

and hence

det Mµ =

√
det

I2 +

(
∂A∗

∂ρ
(ρ0)

)T
∂A∗

∂ρ
(ρ0)

. (A.1)

The next step is to explicitly compute the matrix ∂A∗

∂ρ . Here-
inafter we neglect terms containing the second derivatives of
the residuals multiplied by the residuals themselves. The value
A∗(ρ0) is the attributable, which minimizes the target function
Q(A, ρ)|ρ=ρ0

. That is, x0 = (A∗, ρ0) is a zero of the function

F(x) =
m
2
∂Q
∂A

(x) = BA(x)Tξ(x).

The function F is continuously differentiable, and we have

∂F
∂A

(x) =
∂

∂A

(
∂ξ

∂A
(x)

)T

ξ(x) +

(
∂ξ

∂A
(x)

)T
∂ξ

∂A
(x)

'

(
∂ξ

∂A
(x)

)T
∂ξ

∂A
(x) = CA(x),

where we used the approximation assumed at the beginning. The
matrix CA(x0) is invertible, otherwise the doubly constrained
differential corrections would fail, and the minimum point A∗
could not be reached. By applying the implicit function theorem,
there exists a neighborhood U of ρ0, a neighborhood W ofA∗, a
continuously differentiable function f : U → W such that, for all
ρ ∈ U holds

F(A∗, ρ) = 0⇔ A∗ = f(ρ),

and

∂f
∂ρ

(ρ) = −

(
∂F
∂A

(A∗(ρ), ρ)
)−1

∂F
∂ρ

(A∗(ρ), ρ). (A.2)
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We already computed ∂F
∂A

, so we proceed with the other deriva-
tive, i.e.,

∂F
∂ρ

(x) =
∂

∂ρ

(
∂ξ

∂A
(x)

)T

ξ(x) +

(
∂ξ

∂A
(x)

)T
∂ξ

∂ρ
(x)

'

(
∂ξ

∂A
(x)

)T
∂ξ

∂ρ
(x) = BA(x)T Bρ(x).

By using the Eq. (A.2) we obtain

∂A∗

∂ρ
(ρ) = −CA(A∗(ρ), ρ)−1BA(A∗(ρ), ρ)T Bρ(A∗(ρ), ρ). (A.3)

A.3. From the AR to the sampling space

The last step is the computation of the determinant of the map fσ,
and this depends on S , for which we have different possibilities.
We call Mσ the Jacobian matrix associated with fσ.

If the sampling is uniform in ρ, then fσ is the identity map,
and therefore det Mσ = 1. If the sampling is uniform in log10(ρ),

we have

fσ(log10(ρ), ρ̇) = (ρ, ρ̇),

and hence

Mσ =

(
log(10)ρ 0

0 1

)
⇒ det Mσ = log(10)ρ.

If we are in the cobweb case, the fσ is given by Eq. (3). Its
Jacobian matrix is

Mσ =

√λ1 cos θvx
1 −
√
λ2 sin θvy1 R

[
−
√
λ1 sin θvx

1 −
√
λ2 cos θvy1

]
√
λ2 sin θvx

1 +
√
λ1 cos θvy1 R

[√
λ2 cos θvx

1 −
√
λ1 sin θvy1

]  ,
(A.4)

where v1 = (vx
1, v

y
1). We have omitted the dependency of Mσ on

ρ0 not to have a heavy notation. After some manipulation, the
determinant is

det Mσ = R
√
λ1λ2(v1 × v1).
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