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ABSTRACT
In the preparation for ESA’s Euclid mission and the large amount of data it will produce,
we train deep convolutional neural networks (CNNs) on Euclid simulations to classify Solar
system objects from other astronomical sources. Using transfer learning we are able to achieve
a good performance despite our tiny data set with as few as 7512 images. Our best model
correctly identifies objects with a top accuracy of 94 per cent and improves to 96 per cent
when Euclid’s dither information is included. The neural network misses ∼50 per cent of
the slowest moving asteroids (v < 10 arcsec h−1) but is otherwise able to correctly classify
asteroids even down to 26 mag. We show that the same model also performs well at classifying
stars, galaxies, and cosmic rays, and could potentially be applied to distinguish all types of
objects in the Euclid data and other large optical surveys.

Key words: methods: miscellaneous.

1 IN T RO D U C T I O N

The Solar system small bodies [asteroids, comets, Kuiper-belt
objects (KBO)] are the remnants of the rocky and icy bodies that
accreted to form the planets in the early Solar system. Their orbital
size and compositional distribution are the results of the mass
removal and radial mixing triggered by the planetary migration
in the early history of the Solar system, and of Gyr of collisions
(Bottke et al. 2002; Michel, DeMeo & Bottke 2015).

While their dynamics have provided the main constraints on
the development of theoretical models over the last decade (e.g.
Morbidelli et al. 2005; Raymond & Izidoro 2017) we are entering
an era in which the compositional distribution of Solar systems
small bodies is maybe becoming even more important (DeMeo &
Carry 2013, 2014).

In particular, the populations of small to medium-sized KBO
(tracers of the conditions in the outer planetary nebula) and small
main belt asteroids (belonging to collisional families and hence
progenitors of the near-Earth asteroids and meteorites) are too faint
for current facilities (e.g. LSST Science Collaboration 2009; Spoto,
Milani & Knežević 2015).

Whilst future large sky surveys such as LSST (LSST Science
Collaboration 2009) will likely uncover and characterize a large
proportion of these undiscovered Solar system bodies, ground-based
telescopes are limited to night-time observations and good seeing
conditions. With an estimated launch in 2022, ESA’s upcoming
visible and near-infrared space telescope Euclid (Laureijs et al.
2011) is unlike many of the current surveys that typically focus on
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objects within the ecliptic plane. A survey like Euclid, can expect
to detect 1.4 × 105 Solar system objects (SSOs; Carry 2018),
high-inclination (i > 15◦) asteroids (for which there is currently
a bias against in current census, see Mahlke et al. 2018) and
possibly even some rare interstellar objects such as the recently
discovered 1I/’Oumuamua (Meech et al. 2017; Katz 2018). Its
simultaneous measurements in both visible and near-infrared will
enable us to detect and compositionally map SSOs at the same
time. It will nicely complement from the visible photometry from
LSST and spectroscopy from Gaia (Delbo et al. 2012) in mapping
the dynamics of SSOs. Identifying and removing asteroids in the
data are also important for weak gravitational lensing to prevent
contamination of the shear signal (Hildebrandt et al. 2017). Since
Euclid will produce close to a terabyte of data per day, we need to
prepare tools to deal with this big data quickly and accurately.

Machine learning is ideal approach to tackle the large data volume
and the speed required to deal with upcoming Euclid data. Machine
learning and neural networks have been used in astronomy for
several years: Odewahn (1995) used such methods to classify the
morphology types of galaxies from their properties; similarly Gulati
et al. (1994) built a neural network to classify stellar spectra and
on the topic of asteroids; Misra & Bus (2008) trained a neural
network to predict the spectral class of asteroids from SDSS1 data.
Furthermore, convolution neural networks (CNNs) have allowed
us to apply machine learning directly on astronomical images:
Dieleman, Willett & Dambre (2015) used CNNs to classify galaxy
morphologies, Schaefer et al. (2018) to detect strong gravitational
lensing and they have even been used to estimate continuous

1Sloan digital sky survey https://www.sdss.org.
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properties such as photometric redshifts (Pasquet et al. 2019) and
galaxy cluster masses (Ntampaka et al. 2018).

In this study we apply machine learning techniques to the problem
of SSO detection. The paper is structured as follows: in Section 2
we describe the data and simulations, in Section 3 we present
the convolutional neural net architectures, Section 4 describes our
results and we conclude in Section 5.

2 DATA

Euclid2 is a 1.2 m optical and near-infrared space telescope that will
observe ∼15 000 deg2 of the sky (or over a third of the extragalactic
sky) down to a VAB magnitude ∼24.5 over its planned mission
time of 6.25 yr. The Euclid survey will be carried out using the
step and stare technique: the 0.5 deg2 field of view will observe the
same portion of sky four times, using an optimized dither pattern
(Racca et al. 2016) and as a result of this planned mission strategy,
it should be trivial to identify any moving object within the Solar
system. However with the presence of cosmic rays, galaxies, and
instrumental effects there is a lot of room for the misidentification
of SSOs.

The Euclid payload consists of two instruments. VIS (Visible
InStrument; Cropper et al. 2016) will obtain high-resolution optical
imaging and NISP (Maciaszek et al. 2016) will provide photom-
etry in three near-infrared bands as well as slitless spectroscopy
measurements.

2.1 Simulations

In order to develop the science ground segment tools (pipeline,
data analysis software, system infrastructure, etc.) in preparation
for the Euclid launch and to assess its capabilities in meeting its
scientific goals, detailed and extensive simulations of Euclid data
set are carried out within the Euclid consortium. Our simulations are
created using instrument simulators developed for such purposes.
The simulator we use is based on the Euclid Visible InStrument
Python Package (VIS-PP).3

We ingest simulations of SSOs to create state of the art, Euclid-
like images for training our model. The simulated images are
generated as follows:

(i) The simulator reads in a catalogue of objects (stars, galaxies,
SSOs) with coordinates, magnitude, orientation and, for the SSOs,
apparent speed.

(ii) For the objects that fall on to the CCD, the number of electrons
are computed from the object’s magnitude.

(iii) If the object is a galaxy it is simulated as an input snapshot
taken from Hubble and then convolved with the Euclid point spread
function (PSF).

(iv) If the object is an SSO, this is simulated as a trail of aligned
stars. An oversampling factor of 10 is used to avoid PSF under
sampling effects (e.g. if an SSO covers 10 pixels then it will
be generated from 100 stars). The position of each SSO star is
determined by the input speed and orientation angle, whilst the
apparent magnitude of the SSO is determined by the integrated
stellar flux,

m∗ = mSSO + 2.5 log10 (N∗) . (1)

2http://sci.esa.int/euclid/
3http://www.mssl.ucl.ac.uk/∼smn2/

(v) Once the noiseless image is generated, electron bleeding,
ghosts, cosmic rays, charge transfer inefficiency, read-out and dark
noise, conversion from electrons to ADU and additive bias are
applied. We note that pointing inaccuracy and focal plane distortions
are not simulated. As long as they can be fixed using the Gaia
reference catalogue (Gaia Collaboration 2018), these effects should
have no influence on the detection of SSOs.

2.2 Preparing the data

Our simulated images mimic the output of VIS – each field of view
consists of four quadrants. Each quadrant consists of a CCD read-out
node on the VIS instruments. The total size is 4096 × 4136 pixels,
whilst each quadrant has a size 2048 × 2066 pixels. The image scale
is 0.1 arcsec pixels−1. Each field of view undergoes four dithering
manoeuvres. The pointing displacements during the dithers have
been optimized to the following, dither 2 – �X: 100 arcsec, �Y:
50 arcsec, dither 3 – �X: 100 arcsec, �Y: 0 arcsec, dither 4 – �X:
100 arcsec, �Y: 0 arcsec. Each dither slew takes 64 s depending on
the altitude and orbit, and 280 s for a field-to-field slew. We extract
postage stamp cut-outs of objects of four categories; SSOs, cosmic
rays, galaxies, and stars. The size of the postage stamp is chosen
such that the image is filled by the object plus an additional padding
value drawn from a Gaussian distribution with mean 65 pixels
and a standard deviation 5 pixels. We investigate how our method
performs both with (multichannel) and without (single channel)
temporal information from the dithers. In the multichannel model,
we combine dithers 1, 2, 3 and dithers 2, 3, 4 into two images of red
giant branch (RGB) channels and extract postage stamp cut-outs
centred on each object. We focus on the use of 3 out of the 4 Euclid
dithers at a time due to constraints from our model (see Section 3.4
for more details), but also show that it is possible to make use of
all 4 dithers (Section 4.6). For these images the pixels of galaxies
and stars should appear in all three channels, whereas the pixels of
cosmic rays and asteroids (aside from the very slow moving) should
only appear in one channel. The differentiating characteristic feature
of cosmic rays compared to SSOs are that the latter are convolved
with the PSF. Examples of the postage stamps are shown in Figs 1
and 2.

Figure 1. Examples of SSO images used in the single channel data set (top
row) and those used in the three channel data set (bottom row). The SSOs
are the objects closest to the centre of the image. The first three images
are SSOs with magnitudes in the 20–21 mag bin and the last object is a
25–26 mag SSO. From left to right, the SSOs have speeds of 10, 40, 80,
and 10 arcsec h−1, respectively. The contrast levels of the images have been
adjusted to enhance the appearance of object of interest, and all the images
have been rescaled for illustration.
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Detecting SSOs with CNNs 5833

Figure 2. Examples of the other classes used in the three channel data set.
The left most images are galaxies, the centre two images are stars, and the
right most images are cosmic rays. The lower left image has had adjustments
made to the contrast levels to enhance the appearance of the galaxy, and all
the images have been rescaled for illustration.

3 ME T H O D

3.1 Neural networks

Artificial neural networks (ANNs) are a class of machine learning
algorithm that maps some arbitrary inputs to outputs (Mcculloch &
Pitts 1943). They were inspired by the visualization process of the
human brain and the hierarchical perception of images. In ANNs,
each neuron takes a vector of inputs x = {x1, x2, ..., xn} and applies
a set of weights w = {w1, w2, ..., wn} and a bias b to it,

y = φ

(∑
i

wixi + b

)
. (2)

The input is passed to every neuron in a layer and the output of each
neuron will be passed as an input to each neuron in the subsequent
layer (Fig. 3). The weights and bias values are parameters of
the network, and φ(x) is a non-linear activation function which
determines whether or not the neuron is fired, in other words it
maps the input to the response. The most commonly used non-
linear activation function is the rectified linear unit (ReLU), which
takes the form, φ(x) = max (0, x). This activation function is popular
since both the function itself and its derivative is quick to calculate

∂φ(x)

∂x
=

{
0 x ≤ 0
1 x > 0

. (3)

Furthermore, unlike sigmoid or tanh activation functions, ReLU
saturates only half of the time so partially solves the vanishing
gradient problem.

The input (x) and parameters (w, b) give a predicted output
ŷ = {ŷ1, ŷ2, ..., ŷn}. In supervised learning the true output y =
{y1, y2, ..., yn} is known and backpropagation (Rumelhart, Hinton &
Williams 1986) is typically used to efficiently adjust the parameters
to minimize a loss function L( y, ŷ) (a measure of the distance
between the true and predicted output). Using the gradient descent
method to find the minima, the weights are iteratively updated,

w → w − η
∂L

∂w

b → b − η
∂L

∂b
. (4)

Here η is a tunable learning rate that determines the size of steps that
the parameters can take on each update. A large learning rate will
explore more of the parameter space but will make convergence
to the minimum more difficult. A low learning rate can be more
precise but will take a long time to reach the minimum. In low-
dimensional parameters spaces there may be a risk of getting stuck
in local minima if the learning rate is too small, however local
minima are very rare in the high-dimensional parameter spaces that
are common to neural networks.

The calculation of the gradients can be computationally expensive
when a cycle of the entire data set is required to update the
parameters (batch gradient descent) and the number of training
samples is large (O ∼ 106). Alternatively the gradients can also be
averaged over several randomly selected single samples or small
samples (mini-batches) of the training data. This is known as
stochastic gradient descent (SGD). It is much faster since it uses
less RAM, and is better for finding multiple local-minima, however
it requires the specification of the batch size. If the batch size is too
small the convergence to the global minima will be slow and tends
to be noisy (LeCun et al. 2012).

3.2 Convolutional neural networks

Convolutional neural networks (CNNs; LeCun et al. 1998) are deep
ANNs designed for image recognition. Similarly, the CNN archi-
tecture contains multiple hidden layers, local connections between
nodes and spatial invariance. The convolutional layer of a CNN takes
an input image and convolves it with a small filter (kernel) whose
values are weight parameters to be learnt. The filter is applied across

Figure 3. Left: Visualization of a single neuron. Right: Schematic diagram of an ANN with one hidden layer. Each node in the hidden layer represents a
neuron. A deep neural network will have multiple hidden layers.
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Figure 4. Left: Visualization of a simple convolution filter layer with a 3 × 3 convolutional filter, no padding and a stride of 1. The input represents the pixel
values of an image and the kernel is applied by sliding the kernel’s centre pixel value over pixels of the input. The output pixel is a weighted sum of overlapping
input and kernel pixels. Right: Visualization of a pooling layer, with a 3 × 3 maxpool and a stride of 2. Again this is applied sliding across the input pixels. The
pooling layer reduces the dimensionality of the input by mapping only the highest pixel values.

Figure 5. Depthwise separable convolution consist of first a depthwise
convolution that is applied separately on each channel and then a pointwise
convolution that is the same as a normal convolution (combines all channels)
with a 1 × 1 kernel.

the entire image with a bias and activation function creating a feature
map layer. Fig. 4 – left, shows an example of a simplified CNN.
For images where there are multiple channels (e.g. RGB colour
images), standard convolutional filters will combine all the channels
using a weighted sum. Computationally this is not very efficient.
Pooling layers are used to reduce the dimensionality of the feature
maps, usually by reducing small areas to their maximum pixel value
(Fig. 4 – right). An alternative to the standard convolutional filter
is to use depthwise separable convolution (Chollet 2016; Fig. 5)
which requires less parameters since the convolutional filters are
first applied on each colour channel separately and then on each
pixel across all channels. This also reduces the sensitivity to small
positional shifts and distortions of a feature. Batch normalization
layers are used to improve speed and generalization of the trained
network by renormalizing mini-batches to their mean and variances
during training, and fully connected layers connect all neurons in
the previous layer and enables the mapping to a classification label.

3.3 Architectures

The layers of a neural network make up its architecture. Designing
a good architecture is difficult, time consuming, and requires expert
knowledge. The hyperparameters, those that need to be defined
before training, include the number of convolutional filters, filter
size (typically 3 × 3 pixels), padding (which defines the margin

Table 1. CNN architecture versions used in this paper.

Model Number of Top-1 Top-5 Input
parameters errora errora size (pixel)

Inception v4 35M 80.2 95.2 299 × 299
MobileNet v1 1.0 224 4.2M 70.7 89.5 224 × 224
NASNet-A Large 331 88.9M 82.7 96.2 331 × 331

Note. aTaken from Google’s internal training on the ILSVRC-2012-
CLS http://www.image-net.org/challenges/LSVRC/2012/ data set using
single image crop and may differ from values listed elsewhere.

used when the convolutions are applied), stride (which determines
if any pixels are skipped during the convolution), pooling layer size
and dropout (a random probability of a neuron being ignored) to
name a few. Whilst much research has been done to choose the
best hyperparameters (e.g. Simonyan & Zisserman 2014; Szegedy
et al. 2015; Murugan 2017), in practice it is trial and error, and
complexity is added slowly. We use Google’s Tensorflow library4

and three different architecture models (Table 1).
Inception (Szegedy et al. 2015) is a state of the art CNN.

The performance is often defined by the percentage of correct
classifications featuring in the top-1 and top-5 predicted categories
of each image. In 2015, Inception v3 was the first CNN to
bypass the average human top-5 error rate of 5 per cent, obtaining
a top-5 error of 3.5 per cent on the ILSVRC-2012 data set of 1000
categories. The original Inception-v1 deep convolutional ar-
chitecture was named GoogLeNet. It was inspired by Lin, Chen &
Yan (2013)’s Network In Network, and was one of the first
CNN architectures to implement modules of parallel operations
(inception modules) instead of the traditional sequential stacking.
We implement the latest version Inception v4 (Szegedy et al.
2016) which has since been refined to include batch-normalization,
additional factorization ideas, more inception modules, and a more
simplified uniform architecture.

Another CNN we use is NASNet-A-large (Zoph et al. 2017).
Nasnet is an architecture that was created by a controller neural
network Neural Architecture Search (NAS). With a
small data set, NAS uses a recurrent neural network (RNN; Zoph &
Le 2016) and reinforcement learning to continuously propose

4https://www.tensorflow.org
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Figure 6. Activation images showing an input image (here a star) changing after convolution with the mbnet filters. Here we show only the outputs of the
first four filters of each layer. Layer 1 contains 32 3 × 3 × 3 standard convolutional filters, layer 2 contains 32 3 × 3 depthwise filters, layer 4 contains 64
1 × 1 × 32 pointwise filters, layer 11 contains 256 3 × 3 depthwise filters and layer 14 contains 512 3 × 3 depthwise filters. Also note that the image size
decreases with the layers due to the pooling layers.

improvements to the architecture. Since the use of NAS on larger
data sets would be computationally expensive, it was applied to
CIFAR-10, a data set of 8 × 107 small images in 10 classes to
search for an optimal but scalable convolutional cell. Using a larger
data set Imagenet 20125 which consists of ∼1.4 × 107 images and
1000 classes, NASNet-A-large retrained the weights of its own
repetitions of these cells and filters in the penultimate layer. The final
architecture consists of 18 repeated cells with 168 convolutional
filters per cell. NASNet-a-large exceeds the performance of
any human-designed model to date.

The last architecture we use is mobilenets 1.0 224 (mbnet,
Howard et al. 2017) which is the most accurate of the MobileNets
architectures. MobileNets are not conventional CNNs. Traditional
mobile neural networks relied on cloud computing, but the in-
creasing computational power of mobile devices means that we
no longer require dependence on an internet connection to perform
deep learning tasks. Whilst other new CNNs focus on maximizing
accuracy, MobileNets were designed to be very small and very
fast. The standard convolutional filters in CNNs are factorized into
depthwise and pointwise (1 × 1) convolutional filters which allow
MobileNets to achieve competitive classification accuracies whilst
optimizing for latency, size, and power restrictions. Fig. 6 is an
example of how the layers of the MobileNets architecture affect an
input image.

3.4 Transfer learning

Deep neural networks can have millions of parameters that can
take weeks, if not months to train, transfer learning (Donahue et al.

5http://image-net.org/

2013) significantly reduces the time required for training without
requiring GPU. In transfer learning there is no need to fully train a
deep architecture. An existing architecture can be retrained and fine
tuned to new classification labels (see e.g. Khosravi et al. 2018). This
method has already been successfully applied in astronomy to detect
galaxy mergers (Ackermann et al. 2018) and to classify galaxy
morphologies (Domı́nguez Sánchez et al. 2018). For Euclid the
expected number of SSO detections is very small at high elliptical
latitudes (a few per field of view) but as many as thousands on
the ecliptic galactic fields. Our simulated data are generated to be
representative of the expected abundances of galaxies, stars, and
cosmic rays, but we use an asteroid abundance of 0.6 arcmin−2.
The simulations rely on Hubble data and are both computationally
expensive and volume heavy to generate, therefore in order to have
a balanced data set of each class, we are restricted to a small data
set (O ∼ 103). Consequently we implement transfer learning to
avoid overfitting and to prevent getting stuck at local minima. The
layers of weights are already defined through pre-training on the
ImageNet 2012 data set. We only need to retrain a new top layer
to include the new classes of images and to preprocess the input
images to conform to the input of the architectures (see Table 1).
For preprocessing we resize the postage stamps to the input size of
the architecture using bilinear interpolation. We further renormalize
the image by subtracting all pixel values by 128 and dividing by
128.

CNN layers consist of a three-dimensional volume of neurons
with a width, height, and depth. The depth means that we can
incorporate the dithers of Euclid, with each dither corresponding
to a different depth layer. Since the architectures we use were pre-
trained on RGB (3 channel) images, we use only 3 of the 4 dithers
at any one image.

MNRAS 485, 5831–5842 (2019)
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For retraining we append a new top layer that consists of a softmax
activation function,

φ(xi) = exp(xi)∑N

n=1 exp(xn)
(5)

that gives us a probability of each class (i) over all (N) classes, and a
fully connected (dense) layer. Since we use the softmax function, the
output of our models are probabilities assigned to each class label.
We take the class label with the highest probability as the predicted
class. For optimization we use the standard gradient descent (Gra-
dientDescentOptimizer) and minimize on the mean cross
entropy loss (softmax cross entropy with logits v2),

L( y, ŷ) = −
∑

i

pi log qi (6)

where p ∈ { y, 1 − y} and q ∈ { ŷ, 1 − ŷ}. We initiate the learning
rate at 0.0001 and reduce it by 5 per cent every 1000 iterations.
This provides good accuracy within an acceptable training time.

3.5 Regularization and augmentation

Apart from transfer learning and increasing the amount of data,
there are several other tricks that can be used to prevent overfitting.
Regularization by batch norm was discussed in subSection 3.2,
another regularization technique is dropout, where connected nodes
are randomly disconnected. We implement a 20 per cent drop-out
probability. Note however that the dropout does not significantly
improve fits since there are few parameters in the final layer
and CNNs are applied across several locations of an image.
Augmentation prevents overfitting by adjusting the properties of the
training data. Resizing, cropping, rotating, transposing, and other
image adjustments can also improve the results however this also
significantly increases the time required for training. In Section 4.6
we investigate the use of augmentation.

We split our data into training, validation, and test sets with
70 per cent, 20 per cent, and 10 per cent, respectively. The training
is run using Monte Carlo cross-validation (Xu & Liang 2001) and
stochastic gradient descent with validation batches and training
mini-batches of 100 images. The validation is performed every 10th
iteration and the test data is only seen after the training is complete
and is not used to update the parameters of the architecture.

3.6 Performance metrics

Our testing set is based on simulations so the number of images in
each class can easily be defined, however we do not train our model
on an astronomically representative training data set. Classification
models generally do not perform well when trained on imbalanced
data sets. They tend to overfit the more abundant class. This leads
us to The Accuracy Paradox – a predictive model with a given
accuracy, may have greater predictive power than a model with
higher accuracy. Accuracy is defined as

Accuracy = TP + TN

TP + FP + TN + FN
, (7)

where TP, FP, TN, FN are true positives, false positives, true
negatives, and false negatives, respectively. It is clear that for an
imbalanced data set with 1 SSO and 99 999 non-SSOs a high
accuracy can be achieved by predicting all images to be non-SSOs,
however this model would be useless for our purpose (detection

of SSOs). Receiver Operating Characteristic (ROC) curves are a
common way to visualize the performance of a binary classification
model. It shows the true positive rate (TPR = TP / (TP + FN))
against the false positive rate (FPR = FP/ (FP + TN)) respectively.

Whilst accuracy and area under the (ROC) curve (AUC) are the
typically preferred performance summary statistics, it only reflects
the underlying class distribution and is not very informative when
the training classes are imbalanced. It is therefore also important to
consider: precision, a measure of how pure our sample is (i.e. what
fraction are SSOs), recall, a measure of how complete our sample is
(i.e. what fraction of all SSOs are in the sample), and the F1-score
which is a weighted mixture of the two. A more relevant statistic for
an unbalanced data set is the Cohen kappa score, a measure of the
accuracy normalized by the imbalance of classes. Another common
solution is to use a weighted loss function or feed weighted samples
to the mini-batch. With transfer learning, we have sufficient data to
train on a balanced training set.

In astronomy, to determine how well a classifier method performs
we can look at the purity and completeness of the samples.
In machine learning, purity and completeness are equivalent to
precision and recall. It is clear that purity and completeness is a
trade-off, the sample can be very pure if the threshold value of SSOs
is very high however this will lead to a low number of classified
SSOs, likewise, the sample can be very complete by classifying all
images (SSOs and non-SSOs) as SSOs.

However to see how well the CNN performs on real astronom-
ical data we need to rescale our test results to the astronomical
abundance of the classes.

Purity ≡ Precision = TP

TP + FP
, (8)

Completeness ≡ Recall = TPR = TP

TP + FN
, (9)

Astronomical Purity = TPR × AB

TPR × AB + FPR × (1 − AB)
. (10)

where AB is the astronomical abundance (the number of SSOs
/ the number of all objects).

4 R ESULTS AND DI SCUSSI ON

4.1 Considering two categories

Initially we treat each dither independently and combine cosmic
rays, galaxies, and stars collectively into the category non-asteroids.
The complete data set contains 3756 images of SSOs and non-
SSOs. Of the three models tested; mbnet, nasnet, and inception (see
Section 3.3), we surprisingly found that the mbnet architecture out-
performed the other two on the test data set. Next we apply the same
architectures to the three channel images (col mbnet, col nasnet,
col inception) and similarly the top performing architecture is mb-
net despite being the quickest architecture to train. We believe this
is because our data set consists of low-resolution images and mbnet
having been pre-trained on low resolution (224 × 224 pixel images)
is able to better characterize low-resolution features, whereas
Inception and NASNet are both higher resolution (299 × 299 and
331 × 331, respectively) and deeper models but the added complex-
ity is not adding any extra information and conversely suppressing
the ability to generalize classification performance on new images.
Fig. 7 shows the ROC curve for these models as applied to the
test data set. The dashed line shows the expected ROC curve if the
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Figure 7. ROC curve for the test data set with the same log scale plot inset. Left: two category model. Right: four category model. The dashed line represents
a false positive rate equal to true positive rate. This would be equivalent to the model prediction occurring purely by chance. The colours indicate different
architectures and data used.

predictions from the model are down to chance. ROC curves above
the dashed line perform better than a random guess and an ROC
curve below the line would be performing worse than randomly
guessing and is usually an indication of a bug. As expected, adding
the dither information improves the performance of the neural
networks.

4.2 Considering four categories

It is not uncommon within the astronomical community to write
algorithms specifically to classify a single object, however CNNs,
unlike other machine learning methods, do not require feature
engineering which means the same network can be easily adapted
to multiple class problems. It is therefore a more efficient use of
personnel and resources to develop a single network that can identify
multiple classes in the Euclid data than to have several networks
each classifying a different astronomical object. We retrain the
network with four labels; cosmic rays, galaxies, stars, and SSOs,
using single and multichannel images (Fig. 7). Each class contains
3756 images. The four-label models perform slightly worse than
two-label model, this is not unexpected since the two label case
requires at least a threshold probability of 0.51 to be classified
as an asteroid, whereas in the four-label case it could be as low as
0.26. Also there are more degeneracies between classes. Once again
the MobileNet architecture is the superior model. Table 2 lists the
performances of all the variations of architectures and schemes we
run. From the confusion matrices, we find that stars are most often
misidentified as SSOs in the network trained on single dither images,
whereas, when we include the dither information this changes to
cosmic rays. False negative SSOs were most often misclassified as
galaxies in both scenarios.

4.3 Convergence

The chosen number of iterations used in training needs to be
carefully defined to avoid under or overfitting. This is when the
model has not had enough time to learn the feature or has had
too much time that it is completely fine tuned to perform well on
the training set but performs badly on the test set. We monitor the
training error as a function of the iteration to determine an ideal
stopping point (Fig. 8). It also helps to determine a suitable learning

rate. Ideally, the loss as a function of time will gradually decrease.
If the decline is too fast, then the learning rate is too high and if
the decline is too slow then the learning rate is too low. When the
loss reaches a plateau, is a good place to stop training because if
the training is run for too long it will overfit. If this is the case,
the loss-iteration curve will start to upturn at large times. We also
monitor the training and validation accuracies over time. These two
curves should closely match each other if the neural net is not under
or over fitting.

4.4 Purity and completeness

The expected abundance of asteroids observed with respect to the
other classes in Euclid is as low as ∼0.0001 but varies with ecliptic
latitude. For this abundance we can hope to achieve 100 per cent
purity for at most a 60 per cent complete sample of asteroids
(Fig. 9). None the less, it is clear that this significantly improves
if the abundance of asteroids fed to the model is 0.5. The neural
network approach would make a good follow-up method for the
confirmation of potential asteroids detected from existing methods
to improve the abundance ratio. Otherwise, another way purity can
be further improved is to check the 4 dithers for counterpart images
(see e.g. Bouy et al. 2013; Mahlke et al. 2018). We note however that
an abundance of 0.0001 is a pessimistic estimate and an advanced
Euclid pipeline would be able to remove the majority of cosmic
rays.

4.5 Biases

To infer whether our method is biased in any particular way we look
at the distribution of the false negatives as a function of asteroid AB
magnitude and speed (Fig. 10). We find that there is no particular
trend with magnitude, which means the CNN can pick up even the
faintest asteroids rather well however it does not perform very well
in picking out the slowest moving asteroids. From the confusion
matrices of the four-label models (Table 2), we see that SSOs are
most likely to be misidentified as galaxies which is not surprising
since they are small, extended, and convolved with the PSF just like
the asteroids.
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Table 2. Summary statistics for the different runs. The right most columns are the confusion matrix. This shows the number of predictions for each class
against the true label when the model was applied to the test data set.

Model Time Iterations Test Test Precision Recall F1 Cohen κ Predicted Truth

(s)
acc (per

cent) AUC score

2cat SSO non-SSO

Inception 9048 100k 0.922 0.976 0.938 0.899 0.918 0.843 SSO 320 21
non-SSO 36 350

MobileNet 5485 100k 0.935 0.981 0.948 0.919 0.933 0.871 SSO 327 18
non-SSO 29 353

NASNet 54141 100k 0.911 0.977 0.927 0.888 0.907 0.821 SSO 316 25
non-SSO 40 346

col 2cat

Inception 91557 100k 0.943 0.989 0.954 0.925 0.939 0.885 SSO 356 17
non-SSO 29 399

MobileNet 5737 100k 0.956 0.992 0.973 0.935 0.954 0.912 SSO 360 10
non-SSO 25 406

NASNet 89981 100k 0.945 0.989 0.952 0.932 0.942 0.89 SSO 359 18
non-SSO 26 398

4cat SSO CR galaxy star

Inception 18808 100k 0.737 0.918 0.739 0.737 0.736 0.649 SSO 304 11 6 27
CR 13 283 69 60
galaxy 23 36 249 45
star 5 42 35 208

MobileNet 5825 100k 0.830 0.962 0.831 0.83 0.830 0.773 SSO 313 6 6 10
CR 9 305 43 37
galaxy 17 20 297 33
star 6 41 13 260

NASNet 38389 100k 0.756 0.924 0.759 0.756 0.756 0.674 SSO 299 10 5 26
CR 18 281 72 50
galaxy 24 26 264 38
star 4 55 18 226

col 4cat

Inception 11921 100k 0.726 0.911 0.730 0.726 0.727 0.634 SSO 348 22 5 17
CR 20 249 80 32
galaxy 23 58 235 69
star 13 47 30 269

MobileNet 6152 100k 0.790 0.949 0.793 0.790 0.791 0.719 SSO 359 15 3 3
CR 17 286 66 29
galaxy 24 37 245 47
star 4 38 36 308

NASNet 25761 100k 0.725 0.914 0.727 0.725 0.726 0.633 SSO 352 26 6 17
CR 18 255 77 38
galaxy 23 49 220 59
star 11 56 47 273

Other tests

random 296628 100k 0.504 0.500 0.000 0.0 0.0 0.0 SSO 390 384
non-SSO 0 0

scratch 1219744 100k 0.851 0.916 0.866 0.828 0.847 0.703 SSO 341 66
non-SSO 49 318

aug 307607 100k 0.957 0.988 0.944 0.971 0.958 0.915 SSO 368 11
non-SSO 22 373

4channel 796537 100k 0.900 0.966 0.880 0.934 0.906 0.800 SSO 305 25
non-SSO 48 353

4.6 Further testing

We implement further testing on a cloud virtual machine (Fig. 11).
The following networks were trained on the two-category scenario
and the MobileNets architecture with single depth channel as the

baseline. Whereas previously we used bottleneck values to reduce
the computational time, here we do not. First, to ensure the con-
tribution from transfer learning is indeed significant, we rerun the
training without loading the Imagenet pre-trained weights, instead
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Figure 8. Top left: Training loss as a function of iteration for two-label runs. The dotted line shows the smallest loss and is solely for visual purposes. Top
right: Training and validation accuracy as a function of iteration for the two-label runs. Bottom: the same as the top row but for the four-label models.

randomizing the weight values in the MobileNet architecture and
fixing them (mbnet random). As expected we find the classification
performance to be consistent with chance. The network classified
all the test images as SSOs.

Furthermore we experimented training the MobileNet architec-
ture weight values from scratch (mbnet scratch) with our data. On
the training data and validation data this model seemed to perform
the best, however on the test data it achieved 11 per cent lower than
the baseline model. On further examination of the loss and accuracy
plots, we see that the model begins to overfit after 10 000 iterations.
We believe this is due to the small data size that is insufficient to
constrain the large number of parameter.

Augmentation of the training data is known to improve the
robustness and performance of the model by effectively increasing
the training data volume. We train a model with random flip, random
image crop of up to 10 per cent, random image scaling of up
to ±10 per cent, and random brightness of up to ±10 per cent.
The augmentation improves the accuracy by 2.2 per cent and the
AUC by 0.7 per cent, but increases the training time by ∼×50.
Including augmentation meant that it was not possible to use
bottleneck tensors of the pre-trained network output which sig-
nificantly reduces the training time. None the less, after training the
neural network runs instantaneously, therefore if the computational

power is not a concern then including augmentation is highly
recommended.

Lastly, while it is not possible to use all four dithers as channels
in the pre-trained architecture without training it from scratch,
it is possible to use 4 dithers by modifying the architecture.
To do this we must append additional layers before the pre-
trained network that reduce the dimensionality of the input data
into the correct input dimensions for the pre-trained network.
We use a 2D convolutional layer with a 3 × 3 kernel and three
filters. This gave an accuracy and AUC of 4 per cent lower and
1 per cent lower than that of the baseline model, and 6 per cent and
2 per cent lower, respectively, compared to the 3 channel MobileNet
model.

4.7 Velocity predictions

CNNs can also be used to predict continuous quantities such
as the velocities of asteroids. This is important for follow-up
observations of SSOs. We repurpose the MobileNet architecture
to predict the velocity bin of asteroids in the single dither images.
The result trained in 10 518 s with a 77 per cent accuracy score
on the testing data. Asteroids in the in 10–20 arcsec h−1 bin had
the highest fraction of correct predictions (90.2 per cent) and

MNRAS 485, 5831–5842 (2019)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article-abstract/485/4/5831/5380800 by C
N

R
S user on 17 June 2019



5840 M. Lieu et al.

Figure 9. Purity–completeness curves. The plots on the left are the two-label models and the plots on the right are the four-label models. On the top row we
use an SSO abundance of 0.0001 and on the bottom row an SSO abundance of 0.5.

Figure 10. The fraction of SSOs incorrectly classified as a function of
velocity and AB magnitude. Here we show results for the two-label models
however a similar consensus is drawn from the four-label models.

whereas those in the 40–50 arcsec h−1 scored the worst (only
51.9 per cent were correct). It is unlikely that the lowest velocity
asteroids also had the largest missing fraction in classification due
to bias, and more likely to be due to low number statistics of
the test data (∼50 SSOs per velocity bin). We found no trend
for the accuracy of velocity prediction as a function of true
velocity however, upon further investigation we found that the
40–50 arcsec h−1 asteroids that were incorrectly classified tended
to be classified in the adjacent velocity bins (Fig. 12). Velocity
prediction would be useful to further constrain the identification of
asteroids as it would enable the prediction of an asteroid’s location
in consequent dithers, however this is beyond the scope of this
paper.

5 C O N C L U S I O N S

We use three of the best deep CNNs currently available and apply
transfer learning to retrain them for the classification asteroids. The
neural networks are retrained on Euclid-like images, to identify
asteroids and non-asteroids. The MobileNet model is found to
be the best performing architecture on this data set and is also
the quickest CNN to train. Our model reaches top accuracies of
94 per cent and marginally increases to 96 per cent when we
include an additional 2 of Euclid’s 4 dither images. The model
is shown to further improve on the addition of augmentation (top
accuracy 96 per cent on the single dither images), on the other hand
we find that using all 4 dithers or training scratch does not achieve
high performance. We suspect that this is due to the limitations of
the training data set making it more difficult to constrain the model
parameters.
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Figure 11. Further architecture tests. The top plot shows the ROC curve
of the test data for the networks using augmentation, 4 dithers, random
weights, and training from scratch. The bottom plot shows the accuracy of
the training and validation as a function of iteration for the same networks.

Our model is robust to the expansion of more labels. When
the non-SSO class is replaced with classes; galaxies, stars, and
cosmic rays, the AUC (area under the receiver operating character-
istic curve) score on asteroids decreases slightly by 2 per cent.
This means that method has the potential to perform well on
the classification of all objects in Euclid, provided that a more
complex training data set of simulations were to be produced.
This includes both astronomical objects and instrumental arte-
facts such as supernova, satellite trails, and ghosts. Our research
suggests that the models with and without dithering informa-
tion are complementary to each other. We find that without
using dithering information, our asteroid sample was more con-
taminated by stars, however including the dithering informa-
tion the predicted asteroids were more contaminated by cosmic
rays.

Our CNNs perform well on even the faintest asteroids but are
more susceptible to missing the slowest moving asteroids. The
true abundance of asteroids will be low, therefore to achieve a
high purity and completeness sample we could preprocess the data
with a method such as SEXTRACTOR (Bertin & Arnouts 1996) for
an initial removal of stars, galaxies, and cosmic rays. None the
less, the Euclid pipeline will likely remove the majority of cosmic
rays.

Finally, we show that the same technique can be applied to
predict the velocities of the asteroids to 77 per cent accuracy
and with no obvious signs of bias. This opens up a large
number of possibilities in the future for analysing astronomical
data from Euclid and other big data volume missions such as
LSST.
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Figure 12. Left: Fraction of correctly predicted asteroid velocities against true velocity. The error bars show the standard error. Right: Predicted velocity bin
versus true velocity bin of asteroids. The dashed line represents equality, and the points are jittered in both x and y for clarity.
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