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ABSTRACT

Context. The classification of the minor bodies of the Solar System based on observables has been continuously developed and iter-
ated over the past 40 yr. While prior iterations followed either the availability of large observational campaigns or new instrumental
capabilities opening new observational dimensions, we see the opportunity to improve primarily upon the established methodology.
Aims. We developed an iteration of the asteroid taxonomy which allows the classification of partial and complete observations (i.e.
visible, near-infrared, and visible-near-infrared spectrometry) and which reintroduces the visual albedo into the classification observ-
ables. The resulting class assignments are given probabilistically, enabling the uncertainty of a classification to be quantified.
Methods. We built the taxonomy based on 2983 observations of 2125 individual asteroids, representing an almost tenfold increase
of sample size compared with the previous taxonomy. The asteroid classes are identified in a lower-dimensional representation of the
observations using a mixture of common factor analysers model.
Results. We identify 17 classes split into the three complexes C, M, and S, including the new Z-class for extremely-red objects in the
main belt. The visual albedo information resolves the spectral degeneracy of the X-complex and establishes the P-class as part of the
C-complex. We present a classification tool which computes probabilistic class assignments within this taxonomic scheme from aster-
oid observations, intrinsically accounting for degeneracies between classes based on the observed wavelength region. The taxonomic
classifications of 6038 observations of 4526 individual asteroids are published.
Conclusions. The ability to classify partial observations and the reintroduction of the visual albedo into the classification provide
a taxonomy which is well suited for the current and future datasets of asteroid observations, in particular provided by the Gaia,
MITHNEOS, NEO Surveyor, and SPHEREx surveys.

Key words. minor planets, asteroids: general – methods: data analysis – techniques: spectroscopic

1. Introduction

The minor planets of the Solar System exhibit a wide range
of surface compositions as outcomes of their diverse forma-
tion histories. Mineralogical insights into the main asteroid belt
gained from observing the bodies’ exteriors serve to constrain
the dynamic evolution scenarios of our planetary environment
(Morbidelli et al. 2015), to establish relationships in asteroid fam-
ilies (Masiero et al. 2015), and to identify the parent bodies of
the members of the meteorite collection (Burbine et al. 2002;
Granvik & Brown 2018). The conclusion of a static Solar Sys-
tem formation history (Gradie & Tedesco 1982) has since been
discarded in favour of a dynamical version (Gomes et al. 2005;
Morbidelli et al. 2005; Tsiganis et al. 2005) following the increas-
ing resolution of the compositional distribution of asteroids in
the main belt and in near-Earth orbits thanks to a growing num-
ber of minor bodies characterised by dedicated observational
efforts (e.g. Bus & Binzel 2002b; Devogèle et al. 2019; Xu et al.
1995). Today, the majority of the mass in the main belt is thought
to have been dynamically implanted during a later evolution-
ary stage of the Solar System (DeMeo & Carry 2014; Gradie
& Tedesco 1982), including some of the largest members of the

? The table of asteroid classifications and the templates of the defined
taxonomic classes is only available at the CDS via anonymous ftp
to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.
u-strasbg.fr/viz-bin/cat/J/A+A/665/A26

main belt (Bottke et al. 2006; De Sanctis et al. 2015; Vernazza
et al. 2021; Vokrouhlický et al. 2016). Evidence of a dichoto-
mous meteorite population further strengthens this interpretation
of a large compositional variability among minor bodies as result
of early-stage formation processes in the Solar System (Warren
2011).

To describe the compositional distribution, a classification
scheme based on the observable features of asteroids is required.
A common device used in the interpretation of observations is
asteroid taxonomy. Taxonomic classification refers to the group-
ing of objects with shared characteristics (Candolle 1813). For
asteroids, these characteristics are the observable surface proper-
ties, such as the absorption bands imprinted into their reflectance
spectra or the surface albedos. The implicit assumption is that the
observables are related to the minor planets’ surface mineralogy
(Gaffey & McCord 1979), though this is not a prerequisite for a
practical taxonomy.

Schemes for the compositional classification of minor plan-
ets have been devised and iterated regularly since the 1970s (e.g.
Bowell et al. 1978; Chapman et al. 1971; McCord & Chapman
1975). The initial division into carbonaceous C-types and silica-
ceous S-types was readily apparent in different observables, even
for a small number of observed objects and limited observational
detail. However, with an increasing number of smaller objects
observed, the underlying continuum distribution between these
complexes has been revealed (Bus & Binzel 2002a).
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The most commonly used taxonomies for minor bodies are
the Tholen system (Tholen 1984) and the Bus-DeMeo system
(Bus & Binzel 2002a; DeMeo et al. 2009). While the latter offers
a feature-based classification which encompasses a wide range
of the variability observed in spectral observations and has been
adapted to visible and near-infrared (NIR) photometric observa-
tions (Carvano et al. 2010; DeMeo & Carry 2013; Popescu et al.
2018), the former has not been fully replaced, in part due to two
advantages of the used asteroid observables: the visual albedo pV
and spectrophotometric observations down to ultraviolet (UV)
wavelengths. Both features increase in particular the resolution
of classes which only show faint features in the visible and NIR
wavelength regimes.

In this work we aim to methodologically improve upon the
existing taxonomic schemes for minor bodies with regard to three
aspects. First, we introduce a method which enables the classifi-
cation of complete and partial observations. This offers consis-
tent class definitions across the visible-near-infrared (VisNIR)
region. Second, the visual albedo pV is reintroduced into the tax-
onomy observables, solving the degeneracy of the X-complex as
a primary consequence. Third, asteroids are classified in a proba-
bilistic model, yielding a vector of class probabilities rather than
a definite class assignment, which enables taxonomic outliers
and transitional populations to be identified.

In addition to the methodological advancement, we further
aim to align the scheme of taxonomic classes with advancements
in the understanding of asteroid surface compositions acquired
over the last decade. Studies such as Rivkin (2012), Vernazza
et al. (2014, 2015), and Shepard et al. (2015) have combined
observational evidence for several asteroid and meteorite connec-
tions which show that the classes in the current schemes do not
reflect mineralogical groups. While this is acceptable a priori as
taxonomies are built on spectroscopic data alone, by taking into
account the multi-observable studies we believe that a correction
is acceptable and necessary.

In Sect. 2, we outline the collection of the observational data
used in this study, as well as the methodological advancement of
the clustering strategy with respect to previous taxonomies. In
Sect. 3, we outline the clustering results and the strategy of iden-
tifying compositional classes. These classes are then discussed in
detail in Sect. 4. In Sect. 5, we investigate degeneracies between
the classes in this taxonomy and compare the classifications of
asteroids in this study to those in the literature. The classy tool
to classify asteroid observations in the framework of this tax-
onomy is presented. Finally, we draw conclusions and give an
outlook in Sect. 6.

2. Method

In this section, we describe the compilation and preprocessing
of the asteroid spectra and albedos for the cluster analysis, an
overview of which is provided in Fig. 1. It is followed by a
description of the issues that arise when working with partial
observations (i.e. missing data). After motivating the split of the
dataset into clustering and classification data, the section con-
cludes with a description of our approach to the dimensionality
reduction and clustering problem at hand.

2.1. Input data

2.1.1. Selecting the observables

The selection of asteroid observables to be included in a taxo-
nomical system is a crucial decision in its design. A broad set of

Preprocessing (Sect. 2.1)

Reflectance Spectra

Table E.1

Visual Albedos

Table E.2

Resample to common
wavelength grid (Eq. (1))

ln-Transform

Normalize using GMM
Sect. 2.1.2

Rank by completeness
Sect. 2.1.4

log10-Transform

Rank by method
Sect. 2.1.3

Input Data

Fig. 2 and Sect. 2.1.6

Fig. 1. Overview of preprocessing the input observations. The prepro-
cessing steps encompassed in the dashed rectangle can be performed
using the classy python package described in Sect. 5.

observables ensures its applicability to a large number of aster-
oids and high compositional resolution; however, it complicates
the derivation of the classification scheme and limits the num-
ber of available observations as only the intersection in terms
of observed asteroids can be considered when combining differ-
ent datasets1. This first led (Tholen 1984) to apply the albedo
only in a secondary classification step before the observable was
completely dropped by Bus & Binzel (2002a).

One of our main goals for this iteration of the taxonomy is the
possibility to classify partial observations; we are a priori accept-
ing gaps in the input data, and are thus not limiting the sample
size when combining datasets and can use the union rather than
the intersection of observations. Nevertheless, while we first
considered a classification system based on spectrometric and
photometric observations, and on visual albedos and phase curve
coefficients, we found that including photometric observations
and phase curve coefficients did not add to the compositional
resolution of the resulting scheme as they are effectively low-
resolution versions of the former (DeMeo & Carry 2013; Mahlke
et al. 2021; Shevchenko et al. 2016). Therefore, we chose to build
the taxonomy from asteroid VisNIR spectra and visual albedos.

2.1.2. Spectra

Spectrometric observations are the most compositionally infor-
mative asteroid features accessible via remote sensing. In prepar-
ing this work we focused both on building a large repository of
asteroid spectra and on curating the data. In total, we acquired
over 7500 spectra from online repositories, archived publica-
tions, and directly from the observers. The majority of spectra
are unpublished spectra from the Small Main-belt Asteroid
Spectroscopic Survey (SMASS) (Xu et al. 1995) and MIT-
Hawaii Near-Earth Object Spectroscopic Survey (MITHNEOS)

1 In machine learning literature, the observables used to identify
groups in the input data are referred to as features, while the observa-
tions are referred to as samples. The input data is a matrix spanned by
the features as columns and the samples as rows.
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Fig. 2. Input data shown as a matrix. The columns represent the aster-
oid observables (i.e. the spectral wavelength bins and the visual albedo
pV) and each row represents one observation. The density of sampled
wavelength bins is doubled in the visible compared to the near-infrared
region. The cells are white if the corresponding value was not observed.
The black cells indicate the samples used in the clustering analysis;
the grey cells are samples that are classified but not used to build
the taxonomy itself, due to the large degree of missing information in
these spectra. 2983 observations are at least 40% complete and were
used to train the clustering model. The matrix is sorted by increasing
completeness of the asteroid spectra from top to bottom.

(Binzel et al. 2019; Marsset et al. 2022) surveys available online2.
Literature sources of the spectra are given in Table E.1. After sev-
eral iterations of visual inspection and rejection of low-quality
data and duplicated observations, 6038 spectra of 4526 individ-
ual asteroids remained. About 50% of spectra cover the visible
wavelength range only, while the sample of VisNIR spectra is
about three times as large as in DeMeo et al. (2009) (see Fig. 2
in this paper).

The collection of spectra is heterogeneous in numerous
aspects, including but not limited to their wavelength coverage,
resolution, and sampling patterns. However, a consistent sam-
pling pattern between all spectra is required for the following
numerical analyses. We define this pattern in close resemblance
to the one used by DeMeo et al. (2009), though we halve the
sampling step size in the visible wavelength range as we find
that possible superpositions of absorption features due to mafic
minerals around 1 µm are better described by the finer sampling.
The chosen sampling pattern is

λS ∈ {0.45, 0.475, 0.50, . . . , 1.0, 1.025,
1.05, 1.10, 1.15 . . . , 2.40, 2.45} µm,

(1)

totaling 53 wavelengths. In the following cluster analysis, each
of these wavelengths represents one data dimension.

Before resampling the spectra, we apply a filter (Savitzky
& Golay 1964) to smoothen features present in the spectra
(e.g. telluric absorption features). The filter consists of applying
least-squares fits of polynomials to a window of adjacent data
points. The window size in units of data points and the degree of
the polynomial dictate the amount of smoothing that is applied.
We set these two parameters for each spectrum separately by
visual inspection of the results. The smoothened spectra are then

2 http://smass.mit.edu/

linearly interpolated and resampled to the pattern in Eq. (1). We
then transform the spectra using the natural logarithm, which
serves to approximate a zero mean and uniform standard devia-
tion of the input spectra as they are generally normalised to unity
at either 0.55 µm or 1.25 µm. This standardisation transform is
generally beneficial to clustering and dimensionality reduction
methods (Bouveyron et al. 2019).

The inclusion of missing data in the analysis poses a new
challenge when it comes to normalising the spectral data. The
common approach of multiplicatively setting the reflectance
to unity at a shared wavelength is not possible as no single
wavelength is shared among all spectra, as can be seen in
Fig. 2. Furthermore, this approach would artificially decrease
the variance in the wavelength chosen for normalisation and the
neighbouring wavelength bins, causing the subsequent clustering
analysis to effectively ignore the normalisation region.

Instead, we prepare the spectra in a way which benefits the
following analysis most by employing a Gaussian mixture model
(GMM). We assume that each spectrum can be written αy, where
α ∈ R is a normalisation constant that depends on the consid-
ered spectrum, and y ∈ R53 is a normalised spectrum. Further
assuming that y follows a mixture of k log-normal distributions
with diagonal covariances, all parameters of the models can
be estimated from an incomplete data set via an expectation-
maximisation algorithm (Dempster et al. 1977). This allows in
particular to estimate the normalisation constants of all spectra,
and to finally normalise them. By trial and error, we find that
k = 30 mixture components result in a satisfying normalisation.
As outlined in Sect. 2.2, the assumption of a normal distribution
of the input samples in data space is also made in the clustering
analysis.

Finally, we note that DeMeo et al. (2009) removed the slope
component of the spectra to decrease the influence of space
weathering on the taxonomy and to increase the depth of features
present in the data. We cannot do this due to the missing data;
however, we consider the presence of spectral-weathering effects
in the taxonomy a beneficial rather than unfavourable aspect, as
we further outline in Sect. 4.

2.1.3. Albedo

The visual albedos used in this study were compiled for the
IMCCE’s Solar system Open Database Network (SsODNet3,
Berthier et al., in prep.). The main contributors in this compi-
lation are the Infrared Astronomical Satellite (IRAS) (Tedesco
et al. 2002), the Wide-field Infrared Survey Explorer (WISE)
(Masiero et al. 2011), AKARI (Usui et al. 2011), and Spitzer
(Trilling et al. 2016). We use the SsODNet service to collect
4704 albedo measurements for the 3543 asteroids of which we
have spectral observations using the rocks4 python-interface
(Berthier et al., in prep.).

When possible, we make use of several albedo measurements
per asteroid when combining the input features (Sect. 2.1.4). To
get the most accurate available value for each asteroid, we first
compute the albedo based on the weighted averages of the aster-
oid’s diameter and absolute magnitude provided by SsODNet
following Harris & Lagerros (2002). These averages consist of
the subjectively best available observations (Berthier et al., in
prep.). In a second step, we compute the weighted mean of any
albedo measurement available in the literature for the given aster-
oid and use this value as the second available albedo observation

3 https://ssp.imcce.fr/webservices/ssodnet/
4 https://rocks.readthedocs.io
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in the input data. Finally, the non-aggregated albedo observa-
tions are appended as additional available measurements. The
literature sources we used to compile available albedo values and
recompute updated ones from absolute magnitude and diameter
are given in Table E.2

As for the spectra, we aim to have Gaussian distributions in
the albedo data. Wright et al. (2016) shows that the distribution of
albedos follows a double-Rayleigh distribution with a dark peak
and a bright peak. To get a Gaussian distribution, we pass the
log10-transform of the albedos to the clustering algorithm after
limiting all albedo values to the interval [0.01, 1). We note that
the albedo represents a single data dimension in the following
analysis, compared to the 53 spectral data dimensions.

2.1.4. Merging of data samples

Previous taxonomies were derived based on photometry or spec-
trometry from a single dataset, for example the Eight Color
Asteroid Survey (ECAS) (Zellner et al. 1985) for Tholen (1984)
or the SMASS survey for Bus & Binzel (2002a). Individual
observations of a single asteroid were combined in these datasets
to give the single best-possible observation. In this work we do
not combine the observations as they come from numerous dif-
ferent sources; for example, 549 of the 2125 asteroids have more
than one observation in the input data.

When merging the asteroid spectra and albedo observations
for each asteroid, we aim to create as many complete rows as
possible. The array of albedo values is merged with the aster-
oid’s spectral values in order of most complete observations. If
there are more albedo observations than spectra, we discard the
remaining values. We further set an upper limit of five spectra for
each asteroid, removing any excess ones in order of the fewest
observed wavelength bins. Many spectra of a single asteroid
may cause artificial clusters or trends in the resulting taxonomy.
This reduces the number of available spectra from 6038 to 5906.
Figure 2 shows the final matrix of observations, colour-coded to
differentiate partial and complete observations.

2.1.5. Clustering versus classification

When clustering the entire input dataset described above with the
method outlined below, we note a population of clusters which
contains mostly visible-only spectra. The intuitive explanation
of these clusters is that when computing dimensionality reduc-
tion and projecting the spectra into a lower-dimensional space,
they will be distributed over a smaller volume than the VisNIR
spectra due to their large degree of missing information. This
artificial accumulation of input data in the latent space disturbs
the identification of real clusters in the data. We therefore set an
upper limit of 60% of missing values per spectrum to be included
into the clustering input data, which includes 2983 of the 5906
samples in the input data (see Fig. 2). The remaining 2923 are
not used to derive the taxonomy; instead, they are classified in
the resulting scheme and used to cross-validate the classification,
as outlined in Sect. 5. In Fig. 3, we display the distribution of
the 2125 individual asteroids in the data with which we derive
the taxonomy in the sample over orbital classes and absolute
magnitude.

2.1.6. Data availability

The dataset containing the input data samples, asteroid metadata,
and the resulting classifications as outlined in the next sections is
available at the Centre de Données astronomiques de Strasbourg
(CDS).
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Fig. 3. Distribution of the 2125 individual asteroids used to build the
taxonomy over orbital class and absolute magnitude. MB refers to the
main belt. The number N of asteroids in the orbital population is given
below each orbital class. The bin size of the histograms varies with N.

2.2. Dimensionality reduction and clustering

The derivation of a taxonomy falls into the realm of unsuper-
vised machine learning. In the context of minor bodies, the
approach consists of two steps: dimensionality reduction fol-
lowed by clustering. Previous taxonomies have predominantly
chosen principal component analysis (PCA) for the former and
visual clustering for the latter. Given our goals for this new iter-
ation of the current taxonomy as stated in Sect. 1, we need to
evolve the established method, in particular to allow for the clas-
sification of partial observations. In the following we outline
this method evolution, which arises naturally when challenging
the PCA method with the requirements of our input data and
the prior knowledge from previous taxonomies. The description
of the resulting model is kept concise; the reader is referred to
Tipping & Bishop (1999), Baek et al. (2010), and Montanari &
Viroli (2010) for detailed explanations, and to Casey et al. (2019)
for an example application of the same model but with a different
treatment of missing data in the field of stellar physics.

2.2.1. Dimensionality reduction

The necessity of dimensionality reduction derives mainly from
the spectrometric observations, where each bin of the sampling
pattern represents one of the 54 data dimensions. Clustering in
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such high-dimensional space is not feasible as any model would
be overparametrised given the limited sample size of the input
data. Reducing the dimensionality of the observed data space is
achieved by building linear combinations of the observed vari-
ables, referred to as latent variables5, and projecting the input
data into the space spanned by the latent variables, referred to as
latent space.

We assume that we have N observations of a p-dimensional
observable. The input data Y is thus of shape N × p, denoted
YN×p

6. PCA can be described as eigendecomposition of the
covariance matrix Σp×p of Y,

WᵀΣW = Λ, (2)

where W and Λ are the eigenvectors and eigenvalues of Σ
(Pearson 1901). Expressing the p-dimensional Σ by the q-
eigenvectors corresponding to the largest eigenvalues of Σ, where
q < p, leads to dimensionality reduction while retaining the
largest possible amount of variance within the data. The lower-
dimensional representation ZN×q of the input data Y is given by
the matrix product of Y with the matrix of the subset of eigen-
vectors Wp×q. In the following latent components are denoted W
and latent scores Z. The p elements of each latent component
are referred to as latent loadings. They are the coefficients of
the linear combination of dimensions of the input data. Latent
components are constrained to unit L2-norm (i.e. the square root
of the sum of the squared latent loadings is one). We note that
the latent components and their loadings are determined from
the data alone; no a priori information is used to influence the
matrix.

PCA does not allow for missing data as it relies on the
eigendecomposition of Σ. This limitation is overcome by refor-
mulating PCA as a latent generative variable model. In essence,
while computing the latent components and scores from the
input data, we are making the assumption that there exists a
Gaussian-distributed variable z in the latent space which causes
the variance observed in the higher-dimensional data (i.e. that
the resulting latent scores are normal distributed). A general
model of this approach can be expressed as (Tipping & Bishop
1999)

Y = f (Z,W) + ε, (3)

where f is a function of the latent scores Z and the latent com-
ponents W and ε p×p is a noise matrix independent of Z. The
reformulation of PCA in this model framework is referred to as
probabilistic PCA (PPCA) (Tipping & Bishop 1999). The model
parameters are fit using an expectation-maximisation algorithm
(Dempster et al. 1977) and, when the input data is complete,
gives the same solution as the conventional PCA.

PPCA assumes that the noise matrix ε is isotropic (i.e. all
data dimensions carry the same noise). This is not necessarily
the case for our observations; the uncertainties between visible
and NIR spectra may differ from one another and from that of
the visual albedo. Factor analysis (FA) is another latent gener-
ative variable model analogous to PPCA except that the noise
matrix ε is assumed to be diagonal rather than isotropic (Rubin
& Thayer 1982). The noise matrix is referred to as uniqueness
as it captures the variance that is unique to each data dimension,

5 Latent can here be understood as a synonym for hidden or underlying
as these variables are not directly observable.
6 In the following we state the shape of the tensors in this manner when
we first introduce them, and drop the notation afterwards.

effectively decoupling the measurement uncertainties from the
data covariance.

In FA, the observations Y are modeled as

Y = µ + WZ + ε, (4)

where µp×1 is a p-dimensional vector containing the mean val-
ues of Y along the feature dimensions; W is the matrix of the
latent components, as above; and ε is a diagonal Gaussian noise
matrix, ε ∼ N(0,Ψ), where Ψp×p is diagonal. The latent vari-
ables Z follow a normal distribution with zero mean and unit
covariance, Z ∼ N(0, I). The model parameters can be deter-
mined by a maximum-likelihood approach, even in the case of
missing data, under the assumption that the data is missing at
random (i.e. its probability of being missing is independent of its
value) (Little & Rubin 2019).

2.2.2. Clustering

Using the FA model given in Eq. (4), we assume that the distri-
bution of the latent scores (i.e. the asteroid observations mapped
into the latent space) follows a single Gaussian distribution. How-
ever, we know a priori from the previous taxonomic efforts that
this is not the case; the C- and S-complexes form separate dis-
tributions, and endmember classes such as A, K, and V follow
separate trends in the latent scores (see Fig. 2 in DeMeo et al.
2009). Instead of a single Gaussian, we therefore model the data
as a mixture of g Gaussian distributions, an approach referred
to as mixture of common factor analysers (MCFA, Baek et al.
2010) in the case where the model components are fit in the
same latent space as is the case here. MCFA can be expressed
as specialisation of the FA model in Eq. (4) using (Baek et al.
2010)

µi = Aξi,

Σi = AΩiAᵀ + ε,
(5)

where i ∈ (1, . . . , g), A is the common subspace of the mixture
components (i.e. the matrix of latent components), ξi is the mean
value of the ith mixture components in latent space, and Ωi is
its variance. The noise matrix ε retains its definition as above,
meaning that all mixture components share the same noise.

In MCFA, dimensionality reduction and clustering are
achieved concurrently during the model training. Starting from
an initial set of model parameters as outlined in Sect. 3.1.2, at
each training epoch (i.e. the optimisation of the log-likelihood of
the model against the entire input dataset), this model searches
for the q-dimensional latent space and divides the input samples
into g components, which gives the most likely projection of the
input data assuming that it follows the mixture of g Gaussian
distributions in the reduced space. The hyperparameters in the
model are the number g of clusters and the number q of latent
components.

2.3. Model implementation and availability

Implementations of the MCFA mixture-model approach are
available in the R programming language7 by Baek et al. (2010)
and in the python language8 by Casey et al. (2019). Neverthe-
less, we chose to write an alternative implementation in python
as the implementation by the latter imputes the missing data via

7 https://github.com/suren-rathnayake/EMMIXmfa
8 https://github.com/andycasey/mcfa

A26, page 5 of 32

https://github.com/suren-rathnayake/EMMIXmfa
https://github.com/andycasey/mcfa


A&A 665, A26 (2022)

Clustering (Sect. 2.2)

Classification (Sects. 4 and 5.1)

Parameter Initialization

Sect. 3.1.2

Gradient Descent Training

Latent Factors (Fig. 5)

Latent Components

Latent Scores (Figs. 6 and 7)

Cluster Probabilities

Hyperparameters (Sect. 3.1.1)

4 Latent Factors
50 Latent Components

Input Data

Fig. 2 and Sect. 2.1.6

Input Data or

New Observations (Sect. 5)

Decision Tree

Table D.1

Fig. 4. Overview of the clustering and classification of the input observations. The MCFA model encompassed in the upper dashed rectangle can
be computed using the mcfa python package. The classification of the input data or new observations in the lower dashed rectangle can be done
using the classy python package described in Sect. 5.

mean imputation before training the model using an expectation-
maximisation algorithm. Mean imputation is not appropriate for
our dataset as we know that the spectra of different asteroid
classes may appear entirely different in terms of absorption fea-
tures and slope. Inserting the mean column value in each empty
cell thus does not represent the missing data well. Instead, we
use the tensorflow library (Abadi et al. 2015) to implement a
stochastic gradient descent learning strategy which maximises
the log-likelihood of the model given the observed data only,
which is statistically sound under the missing-at-random assump-
tion (Little & Rubin 2019), contrarily to using mean imputation.
The stochastic gradient descent is of particular interest here as
it estimates the model parameters based on batches of the input
data, meaning that it can scale easily with an increasing number
of observations. This MCFA implementation is independent of
the taxonomy itself and may be applied in different studies. The
implementation and documentation are available online9.

3. Results

In this section, we present the results of fitting the MCFA model
outlined in Sect. 2.3 to the input dataset described in Sect. 2.1.
After depicting the latent space and the structure of the latent
dimensions, we explain how the asteroid classes building this
taxonomy are derived from the modelled Gaussian clusters. An
overview of the clustering steps is given in Fig. 4.

3.1. Model fit

3.1.1. Parameters

We choose to cluster the asteroid observations in q = 4 latent
dimensions using g = 50 Gaussian clusters. Both numbers are
selected from a wide range of values after assessing the result-
ing model fits. Larger values retain and describe more variability
in the data, and at the same time increase the number of free
parameters in the model, hence a trade-off is made in both cases.
The model fits obtained with four or five latent factors were

9 https://github.com/maxmahlke/mcfa

comparable in terms of captured variability in the cluster, thus
we opted for the smaller number of model parameters.

The large initial number of 50 clusters accounts for the model
assumption of Gaussianity in the latent space. We have no reason
to expect a Gaussian distribution of the asteroid classes; there-
fore, we model them as superpositions of one or more Gaussian
clusters. The modelled clusters are later joined and mapped to
build the asteroid classes using a many-to-many relationship and
following a decision tree.

3.1.2. Initialisation and training

The latent loadings and cluster assignments of each observation
have to be initialised at the start of the gradient descent algorithm
to train the MCFA model. The initialisation dictates the global
position in the Hamiltonian which is sampled by the training and
thus has a significant impact on the final result.

A practical issue when reducing the dimensionality of aster-
oid data made up by different observables is the feature weight-
ing. In our case the spectra contribute 53 data dimensions
compared to the single dimension of the albedo. The summed
variance in the former is much larger than the variance in the
latter, resulting in a negligible contribution of the albedo to the
latent space computation which does not reflect its actual infor-
mation content. Tholen (1984) therefore chose not to include the
albedo in the dimensionality reduction, using it in a subsequent
manual clustering step instead. We employ an alternative strat-
egy outlined below which allows us to account for the albedo
while building the latent space.

We initialise the latent loadings using PPCA. This approach
has two advantages. First, the latent loadings are set to the axes
of largest variance in the data, ensuring a high resolution in
the latent space, and second, PPCA is variant to feature scaling
(i.e. data dimensions are weighted with respect to their variance
when computing the dimensionality reduction). An effective way
to increase the importance of the albedo information is hence
to increase the variance of albedo values by some transforma-
tion prior to model training. We achieve this by means of the
log10 transformation described in Sect. 2.1.3, which increases the
variance in the albedo dimension by a factor of 6.8. During the
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Fig. 5. Four latent components of the mixture of common factor analy-
sers model trained on the input data. The left side gives the loading of
the spectral data dimensions for each latent component, while the right
side shows the loading corresponding to the albedo.

gradient-descent model training, we monitor the log-likelihood
of the model given the data. As opposed to PPCA, MCFA is
invariant to factor scaling, which leads to a decrease in the albedo
loadings with each training step. Therefore, we do not train until
the model has fully converged, instead stopping the training
when a good balance between the weight of the albedo and of
the spectra has been achieved. This subjective choice of training
epochs is a concession we make to the challenge of combining
different observables in the same model.

The latent cluster memberships are initialised by fitting a
Gaussian mixture model with 50 components to the principal
scores of the PPCA and assigning each sample to its most proba-
ble cluster. We train the MCFA model on the 2983 observations
of 2125 individual asteroids as outlined in Sect. 2.1.4.

3.2. Latent space

During the model training the latent components matrix W is
derived based on the covariance of the input observations. Each
latent component contains one linear coefficient for each input
data dimension (i.e. the latent loading). The absolute value of
a loading indicates the degree to which the latent component
responds to variance in the corresponding data dimension. Pos-
itive loadings lead to an increase in the latent scores z with
increasing value in the data dimension, negative values to a
decrease in z. The latent scores Z are essentially a vector product
of the input data with the latent components. As such, both the
spectra and the visual albedo of the observations influence the
latent scores Z simultaneously.

The latent components resulting from the model training are
depicted in Fig. 5, with the spectral loadings given on the left
side and the latent loadings corresponding to the albedo dimen-
sion on the right side. We note that they are displayed separately
only for visualisation purposes; for the clustering model itself,
there is no principal distinction between the latent loadings cor-
responding to the spectra and that corresponding to the albedo.

The spectral loadings in Fig. 5 resemble different mineralog-
ical features commonly present in asteroid spectra. The first com-
ponent approximates a positive slope10, with an inflection point
around 1 µm. Components two and three resemble the spectra of
pyroxene minerals due to their bands at 1 µm and 2 µm, though

10 The latent loadings represent the variance of the ln-transformed
spectra.

the band minima and depths differ between the components. The
strongest distinction between these two components is the visible
slope, which is positive for component two and negative for com-
ponent three. Component three has a slight absorption feature
at 0.7 µm. The fourth component depicts an olivine-like 1 µm
band structure. The albedo contributes marginally to the first and
fourth latent component, while component two has a large posi-
tive loading and component three a large negative loading to it.

The latent scores of the asteroid observations are shown in
Figs. 6 and 7. The input data depicts a larger variance when pro-
jected along the first two components rather than along the last
two due to the initialisation of the latent components with PPCA.
It is clear that the featureless spectra will show little variance
when projected along the pyroxene- and olivine-like axes z2, z3,
and z4.

Figures 6 and 7 additionally indicate the mean latent scores
of all asteroids assigned to a given asteroid class, designated
by the class letter and derived in the following sections. As an
example for the interpretation of latent scores, we point out here
that the degeneracy between classes E and S in the latent scores
depicted in Fig. 6 is the result of the large loading of the albedo
in the second component, which offsets the generally featureless
E-types with respect to the feature-rich but darker S-types. This
degeneracy is resolved in other latent components, as can be seen
in Fig. 7.

3.3. Clusters

Concurrent with the dimensionality reduction, the input data is
divided into 50 Gaussian clusters during the model training. The
clusters are not constrained in their covariances, yielding a wide
range of cluster shapes and orientations in the latent space. Illus-
trating the distribution of the clusters in the four-dimensional
latent space is not practical due to their large number; instead,
we show the distributions of input spectra and albedos over the
clusters in Figs. 8 and A.1 respectively.

Most clusters occupy a narrow volume in the latent space
and encompass Gaussian populations in previously recognised
classes such as S and V. When building the asteroid classes from
the clustering, we map the probability of any sample to belong to
either of these narrow clusters one-to-one to the respective aster-
oid class. As an example, for all observations the probability of
belonging to cluster 0 is added to the probability pS of belong-
ing to the S-types (see Fig. 8). Additional S-like clusters such as
cluster 6 further add to pS; 33 clusters are mapped to a single
asteroid class in this manner.

Other clusters either capture continuous trends between
classes or the diffuse background population. An example of the
former is cluster 22, containing spectra from both M- and P-types,
and of the latter cluster 13, containing observations with varying
spectral characteristics and albedos. For these clusters, we imple-
ment decision trees to separate the observations into mostly two
or three distinct classes. These decision trees are described in
Sect. 4 on a per class basis at the end of each class description.
The probability of belonging to either of these clusters is split
and added to the respective class probabilities following the deci-
sion trees. As an example, cluster 22 is resolved via the albedo.
If no albedo is present in the observation, the cluster probabil-
ity is added entirely to pX, otherwise it is split between pM and pP
proportionally based on the albedo distribution of M- and P-types,
derived in Sect. 3.4.2.

For clusters 13, 29, and 41, we note that they capture
objects with high variability in their spectral and albedo fea-
tures. These are either unique objects, such as the only O-types
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Fig. 6. Latent scores of the input data projected along the first two latent
components (grey circles). The mean score of all asteroids assigned to
a given class is indicated by the class letter. For better readability, the
mean score of class C has been shifted by −0.1 in z1.

(3628) Boznemcova and (7472) Kumakiri in cluster 13, or spectra
of questionable quality. We resolve these clusters with decision
trees based on GMMs into different classes: cluster 13 into C, O,
Q; cluster 41 into B and V; and cluster 29 into every class except
for E, K, L, O, R, X, and Z (see Table D.1). Objects in either of the
three clusters are flagged in the classification output as DIFFUSE
and should undergo visual scrutiny.

3.4. Classes

3.4.1. Class continuity

When deriving the mapping of the Gaussian clusters to the
asteroid classes, we strive to maximise the resemblance of the
resulting taxonomy to the established system by Tholen (1984)
and the Bus-DeMeo system. For any change in the classes, we
weigh the evidence in the data to necessitate the change against
the overall practicality of class continuity, opting for the latter
when in doubt. Furthermore, we also take into account miner-
alogic and meteoritic interpretations established in the literature
using observables outside this feature space, allowing us to
derive classes which are more useful for communicating class
properties within the community. These influences from outside
the data-driven approach are stated in the description of the
respective class in Sect. 4.

The main drivers for the evolution of the class scheme are
twofold. The first is the fundamental difference between the prob-
abilistic clustering employed here and the visual clustering used
in previous schemes, affecting specifically classes that reflect
continuous trends in the asteroid population. The second is the
reintroduction of the albedo to the observables of the taxonomy.

The fundamental division of asteroids into feature-poor and
feature-rich populations, the C- and S-complexes, is the baseline
of our scheme, as it has been since the first taxonomic efforts by
Chapman et al. (1975). A small population of asteroids with faint
features occupies the space between these complexes in DeMeo
et al. (2009), separated into the classes K, L, Xc, Xe, Xk, and T.
Thanks to the taxonomic information provided by the albedo and
targeted campaigns of these populations (e.g. Neeley et al. 2014;
Ockert-Bell et al. 2010), this population has grown considerably,
to the point that we recognise it as a third complex, which we
dub the M-complex based on its most populous class.

Taxonomic constants such as the A- and V-types represent
no challenge in identification. It is more difficult to prove the
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Fig. 7. As in Fig. 6, but giving the scores in the third and fourth latent
components. For better readability, the mean score of class S has been
shifted by −0.02 in z3 and of classes C and P by 0.04 in z4.

definition of the Q-types, which represent a continuous trend
towards smaller slopes compared to the S-types and as such does
not separate clearly in the latent space. In favour of class conti-
nuity, we still identify a population in the S-complex as Q-types.
Subclasses such as Sa, Sq, and Sr are not identified, however, as
we observe numerous clusters with varying slopes and mineralo-
gies in the S-complex. Labelling each cluster with a secondary
letter would increase the entropy of the taxonomic system, and
would lead to more confusion than resolution. Furthermore, we
note an overall large variability between observations of sin-
gle asteroids which often exceeds the variability between these
subclasses. Instead, we highlight the different mineralogical
interpretations of these clusters in Sect. 4.5.1.

3.4.2. Resolving the X-complex

Solving the spectral degeneracy of the X-complex in the Bus-
DeMeo scheme is the main motivation to reintroduce the albedo
to the taxonomic system. We employ the system established
in Tholen (1984); asteroids in the X-complex are differenti-
ated based on their albedo values and are labelled P, M, and
E in ascending order of albedo, while the letter X is retained
for observations without albedo. However, instead of applying
strict limits11, we model the joint albedo distribution of all
observations in clusters that we consider to be X-like based on
their spectral appearance: clusters 17, 22, 35, 37, and 46. The
employed model is a GMM with three components. In Fig. 9, we
show the model fit to the albedo distribution of the X-complex,
as well as the derived mean and standard deviations in pV for
classes E, M, and P. Any asteroid that falls into one of these
clusters and has an albedo observation is assigned based on its
probability in this model to the respective class. The subclassifi-
cation indicating the presence of features in the spectra (e and k)
is retained and discussed in the following subsection.

3.4.3. Feature flags

The Bus-DeMeo system recognises four classes which are based
on the presence of distinct absorption features in addition to the
overall shape of the spectra: (1) Ch, exhibiting a feature around
0.7 µm associated with possible surface hydration (e.g. Rivkin
et al. 2015); (2) Xe, showing a narrow feature at 0.5 µm (Bus &
Binzel 2002a); (3) Xk, depicting a faint broad feature between

11 Tholen (1984) applied visual albedo separations of ∼0.06 between P
and M and ∼0.28 for M and E.
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Fig. 8. Overview of asteroid spectra assigned to each cluster, including the number N of spectra and the asteroid classes to which the cluster
contributes, excluding classes with fewer than three contributed observations except for cluster 25 which only has three members. The classes are
sorted by the total number of observations the cluster contributed. The dotted line gives the mean value of the spectra per cluster except for diffuse
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Fig. 9. Distribution of visual albedos in clusters associated with the
X-complex. The spectral degeneracy of the X-complex is resolved by
fitting a three-component Gaussian mixture model to its albedo distri-
bution, consisting of N observations and shown in the histogram. The
fitted components are given by the solid, dashed, and dash-dotted grey
lines in terms of the probability distribution. The vertical dotted lines
give the mean values of components, labelled by the established class
designations P, M, and E in order of ascending albedo. The numbers
below the class labels give the mean pV and the upper and lower 1σ
limits per class. We note that these values slightly change later as other
class members are added from clusters which are not assigned purely to
the X-complex. The final albedo distributions are given in Table 3.

0.8–1.0 µm (Bus & Binzel 2002a); and (4) Xn, with a feature
around 0.9 µm (Binzel et al. 2019). Example spectra carrying the
e-, h-, and k-features are shown in Fig. 10.

The identification and flagging of these features by use of the
secondary letters in the class designation is carried over in this
scheme with a slight modification. First, we do not differentiate
between the k- and the n-feature. Both are centred around 0.9 µm
and after slope removal, we find no appreciable systematic dif-
ference between the features in a sample of spectra previously
classified as Xk or Xn. We do not rule out that these features are
imprinted by different surface mineralogies; however, we chose
the evidence in the data over class continuity, we decided to drop
the n-feature, and continued with only the k-feature.

Second, we do not reserve unique classes for observations
depicting the e- or the k-feature. As discussed in Sect. 4.3,
both features are prevalent in members of the X-complex show-
ing a variety of spectral slopes and albedos. We judge these
two properties to be more important when deriving classes than
the presence of a single feature. Furthermore, we note that e
and k are not mutually exclusive; for example, (2035) Stearns
depicts both features as shown in Fig. 10. We thus decided to
flag the presence of these features by appending the respective
letter to the class designation without considering the resulting
combinations such as Mk or Eek as proper classes.

On the other hand, the h-feature is treated consistently with
the Bus-DeMeo system. It is exclusive to the members of the
C-complex and displays a much narrower, continuous distribu-
tion than the other two features, as shown in Sect. 4.1. Any
sample depicting the 0.7 µm band is assigned to the Ch-class,
regardless of the subclass in the C-complex that the spectra
falls in.

The features are identified in a semi-automated manner. For
each feature we defined a wavelength interval around the band
centre in which the spectral continuum is removed and the
reflectance is fitted using a polynomial of fourth degree, follow-
ing Fornasier et al. (2014). Both the interval and the expected
band centre were defined heuristically using a training sample
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Fig. 10. Example spectra carrying the e-, h-, or k-feature which are
recognised in this taxonomic system. The mean band centres derived
from all visually identified features in the spectral observations is indi-
cated by the vertical dotted lines (e: 0.50 µm, h: 0.69 µm, k: 0.91 µm).
(2035) Stearns exhibits both the e- and the k-feature. Data from SMASS
(http://smass.mit.edu).

of visually identified features, and are given in Table B.1. Using
the polynomial fit, we estimate the band depth with respect to the
continuum, the band centre, and its signal-to-noise ratio. The last
is given by the ratio of the band depth to the reflectance uncer-
tainty, which is estimated using the residuals of the polynomial
fit. The band is considered to be present if the band centre is
within three standard deviations of the expected position derived
from the training sample and the signal-to-noise ratio is higher
than one.

The fitting procedure is run automatically to identify the h-
feature in spectra classified as members of the C-complex (B, C,
P, and the degenerate class X; see Sect. 4.1) and the e- and k-
features for those belonging to the X-complex (E, M, P, and X).
In practice, we find that relying on the automated band identi-
fication yields many false positives given the low threshold of
one in the signal-to-noise ratio and the general uncertainty of
the expected wavelength of the band centre. For example, Cloutis
et al. (2018) give band centres between 0.6 µm–0.75 µm for the
h-feature. Hence, we recommend a semi-automated approach
where the bands are fitted automatically and the observer visu-
ally confirms the quality of the fit and the presence or absence
of the band. The fitting and confirmation are handled by the
classification tool presented in Sect. 5. In the 2983 spectra clas-
sified during the clustering, 13 (144, 135) carry the e-feature
(h-feature, k-feature). For 392 spectra (361, 360), no conclusion
could be made as the spectral region is missing.

The k-feature is particularly challenging to observe as it falls
in the transition of visible and near-infrared spectra, which are
acquired using different instruments. Merging the spectral parts
is non-trivial and several subjective decisions have to be made, as
outlined in Clark et al. (2009). The unknown offsets between vis-
ible and near-infrared can give rise to an artificial feature when
joining the observations. In the case of the e-feature, Bus &
Binzel (2002b) point out a systematic feature between 0.515 µm
and 0.535 µm in the SMASS spectra, which are frequently used
to complement acquired NIR-only spectra. Hence, we note here
that the e-feature should only be considered present if its band
centre is well below this wavelength range.

3.4.4. Class per asteroid

A total of 549 of 2125 asteroids in the input data have more than
one sample in the input data. These observations may or may not
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Table 1. Distribution of observations and asteroids over taxonomic classes and orbital populations.

Fraction Orbital Class
Class Samples Asteroids This work DM09 NEA MC H IMB MMB OMB Cyb Hilda JT

A 57 32 1.5 1.6 2 3 2 7 10 8 – – –
B 68 45 2.1 1.1 15 4 1 12 5 8 – – –
C 299 221 10.4 7.3 69 8 2 89 72 79 2 2 5
Ch 144 107 5.0 4.8 9 2 – 20 47 26 2 – 1
D 119 82 3.9 4.3 6 1 – 1 4 5 5 16 44
E 65 46 2.2 – 7 4 27 4 3 1 – – –
K 59 42 2.0 4.3 21 2 – 5 2 12 – – –
L 76 58 2.7 5.9 20 4 3 4 22 3 – – 2
M 252 142 6.7 – 29 7 2 17 47 28 – 2 10
O 4 2 0.1 0.3 – – – – 1 1 – – –
P 195 135 6.4 – 14 6 1 11 26 36 12 12 17
Q 158 107 5.0 2.2 89 5 – 7 4 2 – – –
R 15 10 0.5 0.3 7 – – 2 – 1 – – –
S 1188 898 42.3 53.8 404 101 35 140 172 45 – 1 –
V 206 142 6.7 4.6 28 2 – 104 4 4 – – –
X 50 33 1.6 8.6 20 8 2 1 – 2 – – –
Z 28 23 1.1 – 1 – 1 4 6 3 – 1 7

Σ 2983 2125 100 98.9 741 157 76 428 425 264 21 34 86

Notes. The second column gives the number of observations assigned to each class, while the third and all following columns refer to the number
of individual asteroids assigned to the class. DM09 refers to DeMeo et al. (2009). The fractions in this column do not add up to 100%, due to the
missing T-class in this scheme. The orbital classes use the following acronyms: NEA – near-Earth asteroids; MC – Mars-crosser; H – Hungaria;
IMB – inner main belt; MMB – middle main belt; OMB – outer main belt; Cyb – Cybele; JT – Jovian trojans.

have been assigned to the same class, opening the possibility that
asteroids have different classes assigned. We resolve these ambi-
guities by computing the sum of the class probabilities across all
observations of the asteroid, weighted by the fraction of observed
data dimensions. Observations with albedo values received an
additional weight corresponding to 25 data dimensions, meaning
that a visible-only spectrum including albedo has approximately
as much weight as a VisNIR spectrum without albedo. If one
of the e-, h-, or k-features is detected in any of the observa-
tions, the final class of the asteroid carries the respective suffix
letter.

In Table 1, we report the total number of observations per
taxonomic class, followed by the number of distinct asteroids in
the class. The latter number only includes asteroids which were
assigned to the class after the merging procedure outlined above
in the case of multiple observations.

4. Discussion

In the following, we discuss the main properties of the 17 classes
defined in this taxonomy in data and latent space, structured
into three complexes: C, M, and S. We give our motivation for
class scheme and point out where it aligns with or deviates from
the existing classifications, in particular the taxonomy by Tholen
(1984) and the Bus-DeMeo system (Bus & Binzel 2002a; DeMeo
et al. 2009), which are the closest predecessors in terms of the
observables. We further outline the decision tree used to derive
the classes from the 50 clusters that were fit to the input observa-
tions in the previous section. An overview of this decision tree is
given in Table D.1

A general overview of the class properties in data space is
given in Figs. C.1 and C.2. Table 1 gives an overview of the
number of samples and asteroids per taxonomical and orbital
class. Tables 2 and 3 show an evolution of the taxonomic scheme

and describe the classes defined in this taxonomy, including an
overview of the spectra of class prototype asteroids, most of
which are discussed in the text. The mean spectra and albedos
for each class (‘class templates’) are available in the CDS repos-
itory. The X-class is not discussed separately as its members are
covered by classes E, M, and P.

4.1. C-complex: B, C, Ch, P

The members of the C-complex are found throughout the main
belt and dominate the regions past the 3:1 mean-motion reso-
nance in terms of number and mass (DeMeo & Carry 2014;
Vernazza et al. 2017). Their spectral appearance is generally
feature-poor apart from the h-feature at 0.7 µm observed in about
one-third of the population and associated with phyllosilicates
present on the surface (Rivkin 2012). Instead, the diversity of
the complex constituents is present in the slope and in the shape
of the spectra, the former ranging from blue over neutral to
red and the latter from overall linear to a concave appearance
attributed to a carbonaceous surface composition including mag-
netite (Chapman et al. 1975; Cloutis et al. 1990b; Gaffey &
McCord 1979).

Common meteorite linkages to the population of the C-
complex involve carbonaceous chondrites such as CI, CK, CM,
and CO with different degrees of thermal metamorphism or
aqueous alteration (Clark et al. 2010; Cloutis et al. 2011; de León
et al. 2012; Hiroi et al. 1996). However, the paucity of these
meteorite groups among the falls even after bias-correction is
difficult to reconcile with the abundance of the complex mem-
bers in the main belt, leading Vernazza et al. (2015) to suggest
interplanetary dust particles (IDPs) as analogues for the non-
hydrated asteroids. Using a radiative transfer model, the spectral
appearance of most C-complex asteroids is well matched using
constituents of chondritic-porous IDPs. The open question on
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Table 2. Evolution of taxonomic scheme from Tholen (1984) to Bus-
DeMeo to this work.

Tholen Bus-DeMeo This work

B → B → B
F ↗

G → Cg ↘

→ Cgh ↘

C → C → C
→ Ch → Ch
→ Cb ↗

D → D → D
→ Z

P . . . Xc . . . P
M . . . Xk . . . M
X . . . X . . . X
E . . . Xe . . . E

. . . Xn |

T → T |

K → K
L → L

Q → Q → Q
Sq

↗ Sr ↘

S → S → S
↘ Sa ↗

Sv
O → O → O
R → R → R
A → A → A
V → V → V

Notes. Arrows are used to indicate the overall evolution of each class.
The T-class is not present in this taxonomy and the feature characteristic
of the Xn has been grouped into the k-feature. The evolution of the X-
complex between the taxonomies is unclear as the visual albedo is not
taken into account in the Bus-DeMeo system. No analogues for K and L
were defined in Tholen (1984).

the surface composition is decisive for the behaviour of the
asteroids under the influence of spectral weathering. Laboratory
irradiation experiments (Lantz et al. 2017, 2018) and statisti-
cal approaches (Thomas et al. 2021) both show opposite trends
for different initial surface compositions: while high-albedo
material exhibits spectral reddening and surface darkening, low-
albedo assemblages become bluer in slope and brighter.

Apart from the C-types, Tholen (1984) defined three smaller
classes based on the albedo and UV distributions: B-types are
‘bright-C’ types with visual albedos around 10%, while F- and G-
types are characterised by their behaviour in the UV wavelength
region (the former flat, the latter showing strong absorption
behaviour). The Bus-DeMeo system retained classes B and C
and extended the taxonomy by addition of the Ch-class for
hydrated C-type asteroids, as well as the classes Cb, Cg, and
Cgh, which describe different slope behaviours in different wave-
length regions. Neither system counts the members of P-class as
members of C, but rather as member of the X-complex.

In this taxonomy, we divide the C-complex into four classes:
B, C, Ch, P. The P-class is here defined for the first time in both
albedo and spectral appearance, allowing us to move it from the

2.0
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3.5

R
efl
ec
ta
n
ce

P
N=135

D
N=82

Z
N=23

0.5 1.0 1.5 2.0

Wavelength / µm

0.8

1.0

1.2

1.4

1.6

B
N=45

C
N=221

Ch
N=107

0.0 0.2

pV

Fig. 11. Mean (solid line) and standard deviation (shaded area)
of the reflectance spectra for each class and endmember of the
C-complex on the left hand side. The spectra are shifted along the
y-axis for comparability. The reflectance scale changes between B,
C, Ch and P, D, Z. The number N of individual asteroids assigned
to each class is given below the class letter. On the right side
are given the median (solid line), the lower and upper quartiles
(box), and the 5th and 95th percentiles of the distribution of visual
albedos within the class. The vertical grey lines give the mean
albedo (solid) and the upper and lower standard deviation (dashed)
within the whole complex. These latter values are 0.05+0.03

−0.02 for the
C-complex.

X-complex and firmly establish it as part of the C-complex. Any
object within the complex that exhibits the h-feature is classi-
fied as a Ch-type, even if it falls in B or P. The distribution of
reflectance spectra and visual albedos for each class is shown in
Fig. 11. The heterogeneous yet continuous distribution of the C-
complex members in latent space is illustrated in Fig. 12. As
change in slope and a broad feature around 1 µm–1.3 µm are
the main differentiators, the complex members split best in the
z1 and z4 latent dimensions12. We note that the apparent diag-
onal gaps between the C- and Ch-class members in the lower
part of Fig. 12 are an artefact of the spectral normalisation (see
Sect. 2.1.2) and are not of a physical nature, as shown by the
large number of asteroids which have samples on either side of
the gaps.

4.1.1. B-types

The B-class was first defined in Tholen (1984) based on their
average albedo, which is higher in comparison to the other
members of the C-complex. With the disappearance of the UV
wavelength region from taxonomy, F-types are no longer dis-
tinguishable from B-types, and the distribution of generally
high albedos of the latter has become a broad distribution

12 We consider an absorption feature to be concave, while other works
such as Lantz et al. (2018) define it as convex.
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Table 3. Description of taxonomic classes defined in this work.

Class Spectrum Albedo Prototypes

A
Broad and deep absorption feature at 1 µm,
strong red slope in the near-infrared. 0.25+0.09

−0.07

0.8

2.5

(246)Asporina (289)Nenetta (354)Eleonora

B
Neutral to blue slope in the visible, blue slope
in the near-infrared. 0.06+0.05

−0.03
0.7

1.1

(2)Pallas (531) Zerlina (3200)Phaethon

C
Red visible slope with a possible broad feature
around 1 µm and a red near-infrared slope. The
spectrum might have an overall concave shape.

0.05+0.02
−0.01

0.9

1.3

(1)Ceres (10)Hygiea (24)Themis

Ch
Absorption feature at 0.7 µm. The near-infrared
slope is red while the overall shape might
be convex.

0.05+0.02
−0.01

0.9

1.3

(13)Egeria (19)Fortuna (41)Daphne

D
Featureless with steep red slope with a possible
convex shape longwards of 1.5 µm. 0.06+0.03

−0.02

0.9

2.3

(588)Achilles (911)Agamem. (1143)Odysseus

E
Strong red slope in the visible with a feature
around 0.9 µm of varying depth and
a neutral near-infrared continuation.

0.57+0.15
−0.12

0.8

1.4

(64)Angelina
(214)Aschera (434)Hungaria

K
Strong red slope in the visible with a broad
feature around 1 µm followed by a blue to
neutral near-infrared slope.

0.13+0.04
−0.03

0.8

1.4

(221)Eos (579) Sidonia (653)Berenike

L
Variable appearance apart from a red visible slope.
A small feature around 1 µm and a possible
one at 2 µm. The near-infrared slope is blue or red.

0.18+0.07
−0.05

0.7

1.6

(234)Barbara (397)Vienna (599) Luisa

M
Linear red slope with possible faint features around
0.9 µm and 1.9 µm. Might show convex shape in the
near-infrared.

0.14+0.05
−0.04

0.7

1.6

(16)Psyche (22)Kalliope (216)Kleopatra

O
Broad, bowl-shaped 1 µm absorption feature
and a weaker feature at 2 µm. 0.26+0.02

−0.02

0.5

1.4

(3628)Boznem. (7472)Kumakiri

P
Linear red slope and generally featureless.
Less red than D-types. 0.05+0.02

−0.01

0.7

1.6

(65)Cybele (87) Sylvia (153)Hilda

Q
Broad absorption at 1 µm and a shallow feature
at 2 µm. An overall blue slope in the near-infrared. 0.24+0.12

−0.08

0.7

1.4

(1862)Apollo (1864)Daedalus (5143)Heracles

R
Strong feature at 1 µm and a feature at 2 µm.
The latter feature is shallower than in V-types. 0.30+0.05

−0.04

0.7

1.6

(349)Dembow. (5379)Abehiro. (137062) 1998 WM

S
Moderate features around 1 µm and 2 µm
and a neutral to red near-infrared slope. 0.24+0.10

−0.07

0.8

1.4

(3) Juno (5)Astraea (14) Irene

V
Deep absorption features at 1 µm and 2 µm.
The former is much narrower than the latter. 0.29+0.11

−0.08
0.9

1.8

(4)Vesta (1929)Kollaa (4215)Kamo

Z
Extremely red slope, redder than the D-types.
Featureless but may exhibit concave shape
in the near-infrared.

0.07+0.04
−0.03

1

3

(203)Pompeja (269) Justitia (908)Buda

Notes. Listed are the spectral appearance, visual albedo distribution giving the mean value, the lower and upper standard deviation, and the spectral
prototypes of the 17 classes defined in this taxonomy excluding the X-types.

with a standard deviation of around 10%, see Fig. 11.
This distribution is further visible in the large variance in
the z2-scores of B-types (Fig. 12). Instead, the bright C
(Tholen 1984) are best identified by another common inter-
pretation of the class mnemonic, their blue slope longwards

of ∼0.7 µm, causing a readily apparent distinction from other
classes specifically in the z1 latent score. Nevertheless, the B-
types do not separate entirely from the neighbouring C-types and
form a diffuse but continuous branch of the complex, as shown
in Fig. 12.
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Fig. 12. Distribution of C-complex and its endmember classes D and Z in the first latent component vs the second (top) and the fourth (bottom) latent
components. The samples assigned to each class are given with the respective class letter. The latent scores of all samples outside these classes are
shown as grey circles. Some outliers in z2 and z4 are not shown for readability. The five subpanels above each panel show regions of interest where
a selection of asteroids are highlighted by replacing the symbol with the respective asteroid’s number. If more than one spectrum of the asteroid is
in the input data, its number may appear several times.

The class variance in z1–z2 indicates that bluer B-types
also tend to be brighter. As shown in subpanel a in
Fig. 12, the archetype B-type (2) Pallas and near-Earth aster-
oid (3200) Phaethon are among the bluest and brightest class
members. (531) Zerlina is further highlighted as a member of the
Pallas collisional family, for which Alí-Lagoa et al. (2016) note
a significantly higher average albedo compared to the remain-
ing B-types. In z4 B-types have higher scores than the other
C-complex members, with the z1 score due to the visible part
of the fourth latent component resembling the B spectral region
(compare Figs. 5 and 11).

A total of 45 asteroids (2.1%) are classified as B-types in
this study. The B-class is made up of a single cluster (2) and is
not subject to any decision tree. We note that the Themis-like
B-types with a neutral-to-reddish slope in the NIR, as described
in Clark et al. (2010) and de León et al. (2012), are C-types in
this taxonomy, in agreement with their classification in the Bus-
DeMeo system (see subpanel h in Fig. 12).

4.1.2. C-types

The carbonaceous C-types present spectra with a neutral to
small red slope and are generally featureless except for a broad

feature around 1.3 µm, which may give the spectrum an over-
all concave shape. In the upper part of Fig. 12, we observe a
uniform distribution of the C-types in z1–z2 with the class vari-
ance aligned with the z1 axis; z2 is not a suitable projection for
the C-types as they are featureless and present a narrow albedo
distribution, as shown in Fig. 11. Instead, the concave feature
shape is captured in z4, hence in the lower part of Fig. 12 we
observe a more structured clustering. The positive correlation of
z1 and z4 scores among the C-types indicates that the spectra on
average get more concave as they get redder. Nevertheless, the
wide and continuous distribution around this general trend pre-
vents us from defining analogues to the classes Cb, Cg, and Cgh
in the Bus-DeMeo system as we aim to refrain from subjectively
partitioning the latent space.

Both (1) Ceres and (10) Hygiea are members of the C-
class (see subpanel b in Fig. 12). In subpanel h, we highlight
(24) Themis, (45) Eugenia, and (52) Europa. All these asteroids
are well matched by the models composed of IDP constituents as
described in (Vernazza et al. 2015) and have on average higher
z4 scores than the Ch-class members of comparable slope.

A total of 221 asteroids (10.4%) are classified as C-types in
this study. C-types are present in three different clusters (5, 19,
26, where the first two are the two largest of the 50 clusters in
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the model). Cluster 19 contains both prominent C-types such as
(45) Eugenia and (52) Europa as well as prominent P-types such
as (65) Cybele and (87) Sylvia, as shown in subpanel c in Fig. 12.
The cluster resembles the Cb-class from the Bus-DeMeo sys-
tem. We split this cluster into two components (C and P) using
a GMM in z1–z4. While we generally aimed to keep the num-
ber of post-clustering decision trees to a minimum, we make the
choice here to follow the mineralogical interpretation of the C-
complex given in Vernazza et al. (2015) and Marsset et al. (2016),
among others, and to increase class continuity for the objects in
these clusters.

4.1.3. Ch-types

Unlike for the other feature flags outlined in Sect. 3.4.3, we
reserve a unique class for the 0.7 µm h-feature, following the con-
vention of the Bus-DeMeo system. We observe the continuous
and narrow distribution of samples carrying this feature similar
to the other classes in the C-complex. Furthermore, as above for
the C-types, we recognise the mineralogical and meteoritic inter-
pretation of the C-complex members in the literature (e.g. Cloutis
et al. 2011; Marsset et al. 2016; Vernazza et al. 2015).

While degenerate with the distribution of C-types in z1–
z2, the Ch-types generally have lower scores in z4 than the
C-types, corresponding to linear rather than concave spectra. In
subpanels g and i of Fig. 12, we highlight asteroids (41) Daphne,
(49) Pales, (121) Hermione (144) Vibilia, and (159) Aemilia, all
of which are compatible with CM chondrite spectra following
the interpretation in Vernazza et al. (2015). (130) Elektra is also
linked to these objects based on the density measurements (Carry
2012; Hanuš et al. 2017; Yang et al. 2016).

The 0.7 µm h-feature has been observed in at least one obser-
vation of 107 asteroids (5.0%). Members of the Ch-class are
found in clusters 2, 5, 17, 19, and 26. The assignment requires
the identification of the 0.7 µm h-feature. Within the C-complex
only, 20.4% of samples present the h-feature. The actual num-
ber is likely higher as 12.1% of samples in the C-complex are
missing the visible wavelength range, for example a NIR-only
spectrum of (41) Daphne indicated as C-type in subpanel g of
Fig. 12.

4.1.4. P-types

The P-types have been absent from the taxonomic schemes since
Bus & Binzel (2002a), and thus no definition of the VisNIR
behaviour exists. As part of the X-complex, the ‘pseudo-M’ types
(Gradie & Tedesco 1982) are spectrally degenerate to the E- and
M-types in the visible wavelength range, specifically, the ECAS
colours. In the NIR, P-types show a red linear slope (see Fig. 11).
We find that the spectral degeneracy between P and M continues
in the NIR, while E-types differentiate by showing overall neu-
tral slopes. Classes P and M have to be distinguished by visual
albedo observations, which is about 5% for P-types.

As the X-complex is dissolved in this taxonomy, we assign
the class to the C-complex following the proximity to the other
classes in Fig. 12. This assignment is also in line with the IDP
interpretation (Marsset et al. 2016; Vernazza et al. 2015). In z1–z4
space we observe a high-density cluster of P-types immediately
adjacent to C-types. These samples are spectrally similar to the
Cb-class in the Bus-DeMeo system. Furthermore, there is a more
diffuse population of P-types building a bridge between the C-
complex and the D-class.

The P-class is part of the former X-complex and of the
new C-complex. Observations assigned to the P-class are thus

inspected for all three features. While 19.2% of samples in the
P-class present the h-feature, we note that no sample carries
the k-feature, which is most prominent in the M-class. Three
samples assigned to P show the e-feature, yet they belong to aster-
oids which are later assigned to the M-class: (4660) Nereus and
(5645) 1990 SP. The k-feature may thus be a reliable differentia-
tor between the spectrally degenerate M and P. The distribution
of these features is discussed further in Sect. 4.3.

A total of 135 asteroids (6.4%) are classified as P-types in
this study. Class P is built primarily from clusters 17, 19, and 22,
where cluster 19 entails the continuous transition to class C and
the first and third M-types. As mentioned above, we used the pro-
totypes (65) Cybele and (87) Sylvia to differentiate between the
classes, though assigning both to the C-types would have been
justified as well given the cluster trend depicted in Fig. 12 (see
subpanel c).

4.2. Endmembers: D, Z

We refer to D and Z as endmembers, due to the visible gap
between their members and the C-complex in the latent space in
Fig. 12; however, some of the P-types form a bridge population
between the two classes.

4.2.1. D-types

The defining property of dark D-type asteroids is their featureless
and strongly red-sloped spectrum both in the visible and in the
NIR (DeMeo et al. 2009; Tholen 1984). They are predominantly
found beyond the outer main belt, especially among the Jupiter
trojan population, where they dominate the region in terms of
mass (DeMeo & Carry 2013, 2014).
D-types form a homogeneous population in spectral and in

albedo space, as shown in Fig. 11. This homogeneity is mir-
rored in the latent scores z1 and z4 as well (see Fig. 12), where
in subpanel d we show the positions of (911) Agamemnon and
(1143) Odysseus. In the second latent score, the D-types appear
to split into a blue and a red population. We attribute this again
to the normalisation of the spectra, which can cause these spu-
rious offsets. Comparing the samples in the clusters showed no
significant difference in the observables, and (2246) Bowell and
(2674) Pandarus are present in the two clusters. Nevertheless,
this serves as an example that the normalisation algorithm we
devised for the partial observations may require further improve-
ment. Furthermore, all clusters in latent space have to be verified
by comparing the members in the observed features.

A total of 82 asteroids (3.9%) are classified as D-types in this
study. D-types appear predominantly in two clusters, the homo-
geneous main cluster 1 and a more diffuse cluster 34, which may
contain interlopers of classes P and M. Furthermore, there are
two small clusters containing both D- and S-types. Cluster 8 has
16 VisNIR spectra of D-types and strongly-sloped S-types, which
are separated using a two-component GMM in z2-z4, where the
feature-rich S-types have higher scores in z2. Cluster 43 contains
14 spectra, which are mainly visible-only S-types but include five
visible-only D-types, which we separate in the same way as in
cluster 8.

4.2.2. Z-types

The clustering revealed a low-number diffuse cluster of fea-
tureless extremely red objects, showing larger slopes than the
D-types. Figure 12 shows that in z1 these objects form a con-
tinuum with the D-types; however, the classes show different
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Fig. 13. Orbital distribution of D- and Z-types given by the respec-
tive class letters. The grey dots show the orbital elements of all other
asteroids in the input data.

variances in the z1–z4 space: unlike D-types, Z-types show a clear
trend towards a more convex shape with increasing slope. In addi-
tion, the classes show distinct orbital distributions, as illustrated
in Fig. 13. While D-types are mostly situated among the Jupiter
trojan population and the Hildas, these extremely red objects are
largely scattered over the main belt. Three members of this pop-
ulation, (3283) Skorina, (15112) Arlenewolfe, and (17906) 1999
FG32, have previously been recognised in SDSS observations
(e.g. Carvano et al. 2010) and described in a follow-up study
by DeMeo et al. (2014), who further identified (908) Buda as a
similar object.

The distinct distributions in latent and in orbital space
prompt us to define a new class for this group of minor bodies.
We propose the letter Z, which had previously been suggested by
Mueller et al. (1992) for the extremely red Centaur (5145) Pholus.
The 23 asteroids in the Z-class show overall low albedos, though
we note the presence of outliers in Fig. 11.

The two reddest objects in this new class, (203) Pompeja and
(269) Justitia, have been proposed as implanted trans-Neptunian
objects by Hasegawa et al. (2021b). The authors suggest that
complex organic material on the surface of these objects leads
to the extremely red appearance. The prevalence of Z-types in
the inner and middle main belt orbits of the objects could also
indicate that a surface process such as spectral weathering is
responsible.

A total of 23 asteroids (1.1%) are classified as Z-types in this
study. They fall exclusively into cluster 36. Even so, we expect a
certain number of D-type interlopers in this class as we observe
an overlap in the latent space (see Fig. 12) and in subpanel (j),
where we have highlighted the Trojan asteroids (1172) Aneas,
(1542) Schalen, (4035) Thestor, and (7641) Cteatus, which spec-
trally match D-types.

4.3. M-complex: K, L, M

The M-complex comprises classes that fall in terms of spectra
and albedo between the C- and the S-complex. Composition-
ally, it is the most diverse complex. For C and S the ensemble
properties can be regarded as carbonaceous, primitive for the for-
mer and silicaceous, in part thermally metamorphosed for the
latter (Cloutis et al. 1990a, 2011; Vernazza et al. 2014), while
the likely mineralogical properties of any M-complex member
cannot be given based solely on its complex membership. Mete-
orite analogues range from most carbonaceous chondrite clans
in the meteorite collection to stony-iron and iron meteorites
(Clark et al. 2009; Ockert-Bell et al. 2010; Sunshine et al. 2008;
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Eschrig et al. 2021; Shepard et al. 2010). Indeed, the only
unifying property of these objects appears to be the spectral
appearance with absent or generally faint features around 0.9 µm
or 1.9 µm and an albedo around 15% with the exception of the
endmember class E.

Devising the cluster-to-class decision tree proved challeng-
ing in this complex. In combination with the faint features, we
observe slight variations in the slope in the NIR, and class
degeneracies appear when the visible information is missing.
Furthermore, we cannot rely as much on previously established
terminology as this is a new complex in terms of taxonomic
systems, replacing the X-complex as a third complex in previ-
ous taxonomic systems. Both the K- and the L-types are more
recent than the Tholen (1984) taxonomy, which introduced the
X-complex (Bell 1988; Bus & Binzel 2002a). The Bus-DeMeo
system captures the diversity in the NIR in part in the form
of the X- and Xk classes; however, no clear separation between
the X- and the C-complex is achieved due to the lack of albedo
information.

We split the complex into the three classes K, L, and M, shown
in Fig. 14. Class M, in particular, contains a wide distribution
of spectral appearances and likely mineralogical compositions.
Nevertheless, we opt against a division of this class as no clear
separation presents itself in this study, and we advocate for a divi-
sion based on observables not included in this taxonomy. The
T-class, which was tentatively introduced by Tholen (1984) and
carried over in the Bus-DeMeo taxonomy, is dropped as proto-
types (114) Kassandra and (308) Polyxo are well described by
classes P and M.

4.3.1. K-types

Members of the K-class exhibit a red slope in the visible region
with a 1 µm band associated with forsteritic olivine (Mothé-
Diniz et al. 2008) and a neutral slope in the NIR. They have
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Fig. 15. As in Fig. 12, but for the member classes of the M-complex and its endmember class, the E-types.

low z1 and high z4 scores in comparison with the complex com-
panion classes (see Figs. 14 and 15). Most K-types have visual
albedos in the range 10%–15%, a narrow distribution which is
comparable to the M-types and slightly lower than the L-types.

Dynamically, most main belt K-types are associated with
the Eos family and depict on average a deeper 1 µm band than
K-types outside the family based on the z4 score (Clark et al.
2009), compare for example (402) Chloe and (1545) Thernoe to
(221) Eos and (661) Cloelia in subpanel h in Fig. 15.

The class-averaged slope is neutral to slightly red in the
NIR. However, some members, including the class archetype
(221) Eos and (3028) Zhangguoxi, have a blue NIR slope, indi-
cated by their low z1 scores in subpanels a and b of Fig. 15.
As the NIR spectrum is featureless above ∼1 µm, this leads to
a spectral degeneracy with the B-types, and the brighter part of
the B-population requires the visible wavelength range informa-
tion to be separated from the K-class. In subpanel a of Fig. 15,
we see that (2100) Ra-Shalom is classified as a K-type, based on
two NIR spectra. The only VisNIR sample of (2100) Ra-Shalom
in this study is classified as a B-type. We note that (2100) Ra-
Shalom is classified both as B and as K in the literature, based on
its VisNIR spectrum (B: Binzel et al. 2019; de León et al. 2012
and K: Shepard et al. 2008a). The same degeneracy has been

reported for B- and K-types in NIR spectra (Clark et al. 2009)
and in the colour-space of the VISTA MOVIS survey (Popescu
et al. 2018).

The distribution in z1–z2 shows a considerable overlap
between M and K, with a slight gap between the populations
around z1 = 0.3. We considered whether the redder K-types may
be Mk instead; however, among them are Eos family members
such as (579) Sidonia and (653) Berenike, and thus we consider
this slope variability to indicate K-types. The overlap is further
resolved in z3-z4, where the K-class forms a denser population
than the sparsely distributed Mk-types (not shown).

A total of 42 asteroids (2.0%) are classified as K-types in this
study. K-types are found in two clusters, neither of which they
populate entirely on their own. Cluster 24 is shared with M-types
with neutral NIR slopes, while cluster 31 contains NIR-only
observations of B-types as well as L-types. We resolve cluster
24 into K- and M-types using a two-component GMM fit to the
cluster distribution in z2-z3, where K-types separate due to the
large 1 µm band. Cluster 31 is only split into K and Lmembers as
the degeneracy with NIR observations of B cannot be resolved
with the observables in this taxonomy. The cluster members are
assigned based on their probability of belonging to cluster 23 (L)
or 24 (K) in z2-z3.
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4.3.2. L-types

L-type asteroids are associated with large abundances of spinel-
bearing calcium–aluminium-rich inclusions due to a wide
absorption feature around 2 µm (Sunshine et al. 2008). This
composition would imply that the L-type parent bodies were
among the first planetesimals to form in the accretion disk,
making them of high interest for formation scenario studies
(Devogèle et al. 2018). However, in addition to the 2 µm feature,
L-types are spectrally heterogeneous in slope and shape of the
visible and 1 µm region and in their albedo distribution, shown
in Fig. 14. The diversity of L-types makes it difficult to reliably
identify them in a taxonomy based on spectral features and opens
up degeneracies with a handful of neighbouring classes, such as
K, M, and S.

We find that many previously classified L-types cluster in
dimensions z2-z4, where they branch off of the M-complex below
the S-complex together with the E-types (see Fig. 15). The sec-
ond latent component matches the spinel-associated 2 µm band
best, giving L-types higher z2 scores compared to the other
classes in the complex, while compared to the S-types the 0.9 µm
contribution to the z4 score is missing.

In Fig. 15, we see that the L-types identified in z2-z4 exhibit
a bimodality in terms of their slope in z1, further shown in the
spectral domain in Fig. C.1. This dichotomy is not caused by the
normalisation of the spectra. Instead, we find that previously clas-
sified L-types with intermediate slope such as (606) Brangane
are classified either as M or S as they lack the 2.0 µm feature (see
subpanels c and h in Fig. 15). We regard the slope variability
of the L-types classified here as intrinsic to the class, supported
by (599) Luisa, which has both a blue and a red spectrum (see
subpanels b, d, and i in Fig. 15).

Of particular interest among the L-types are the subgroup
members referred to as Barbarians after (234) Barbara, which
show anomalously high inversion angles in their negative polari-
sation branch (Cellino et al. 2014; Devogèle et al. 2018). We find
that this group of asteroids has a large variance in latent space.
In z1–z2, Barbarians such as (234) Barbara, (824) Anastasia,
(599) Luisa, and (606) Brangane and (1284) Latvia (which are
classified as M) are found in both the M- and S-complexes and
at the transition region (see subpanels b–d and g–j) in Fig. 15).
We also do not find a reliable clustering in the remaining
latent scores. The spectral L-types do not include all Barbar-
ians, among which we observe a diversity that is too large to
derive a unique class in this taxonomy. Of the 16 Barbarians from
Devogèle et al. (2018), 7 are L-types and 5 are M-types. An exten-
sion of the taxonomy observables with polarimetric observations
is required to reliably identify Barbarians.

A total of 58 asteroids (2.7%) are classified as L-types in this
study. L-types occur predominantly in clusters 4 and 23. As for
the K-class, these two clusters are populated by members from
other classes as well. For cluster 4, we split the L- and S-types
based on a two-component GMM in z3-z4 trained on the distribu-
tion of the members of cluster 23 and cluster 40 in this space. For
cluster 23, we split the L- and M-types based on a two-component
GMM in z1–z4. A small fraction of L-types are also in cluster
37, which consists largely of M-types. The L-types are recovered
using a two-component GMM in z2-z4.

4.3.3. M-types

The M-class is one of the oldest asteroid designations (Zellner
& Gradie 1976). Originally introduced to describe asteroids rep-
resenting presumably metallic cores of disrupted planetesimals

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

z1

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

z
2

k
k k

k

k

k

k

kkk
kk
k

ek

k

k
k

kk

k

k

k

kk

k
k

kk

k

k

k

k
k
k

k

ek

k

k

k

kk

ek

eke

k

k

k

k

k kk
k

k

k

k

k
k
k

k

k

k
k
k

k

k
k

k

k

k

k

k
k

k k

ek

k

k

k

kk k

k
kk

k

k
k

k

k

k

k

k

k

k

k

k

k

k

k

k
k

k

ek

k

k

ek

ek

k

k

k

k
e

e

k

e

k

k

k

k

kk k

k

k

k
k

k

k

k

k

k

ek

k

k

k

k
k

k

k

Fig. 16. Distribution of observations which carry the e- and k-feature
in the first two latent scores, colour-coded by the class they are assigned
to: green – E, orange – M, purple – P, grey – X. A smaller font size is
used if the observation carries both e and k.

(Bell et al. 1989; Gaffey & McCord 1979), dedicated observa-
tional efforts have revealed a variety of objects based on their
densities (Carry 2012; Vernazza et al. 2021), hydration (Rivkin
1995, 2000), radar albedos (Shepard et al. 2010, 2015), and sil-
icate spectral features (Clark et al. 2004; Fornasier et al. 2010;
Neeley et al. 2014; Ockert-Bell et al. 2010).

In spectral space, M-types asteroids are red with either linear
or convex shapes, as shown in Fig. 14. The convex trend may
even result in an overall blue slope longwards of 1.5 µm, as is the
case for (21) Lutetia in four out of five observations in this study.
M-types in the lower z1 region around (21) Lutetia, highlighted in
subpanels b and g in Fig. 15, closely resemble the Xc-class in
the Bus-DeMeo system. At the other end of the class in z1, aster-
oids like (771) Libera and (779) Nina are examples of red, linear
slopes in the NIR, shown in subpanel e in Fig. 15. M-types have
an albedo distribution of 10%–20%. We note that (55) Pandora
has an albedo of 0.34, and one of its samples is classified as E,
visible in the upper part of Fig. 15, around (z1, z2) = (0.3,−0.2).

Silicate features at 0.9 µm or 1.9 µm are likely more com-
mon than an entirely featureless spectrum among M-types, with
40.9% of M-type samples exhibiting the k-feature. Of the sam-
ples, 30.2% lack the corresponding wavelength region observed.
In Fig. 16, we display the first two latent scores of samples with
the e- and k-feature. The latter feature is ubiquitous among M-
types, and a concentration in latent space around (16) Psyche is
visible. (55) Pandora, (129) Antigone, and (201) Penelope further
show the k-feature in one or several samples, and are highlighted
in subpanels c, f, and g in Fig. 15. The bands are linked to dif-
ferent pyroxenes (Hardersen et al. 2005), and the presence of the
1.9 µm band is accompanied by the 0.9 µm band, but not vice
versa (Shepard et al. 2015).

The distribution of M-types in latent space and the results
acquired in the studies cited above suggest that there are at
least two populations of M-types, the chondritic population, of
which (21) Lutetia may be the archetype, and the metallic popula-
tion, of which (16) Psyche is the prototype (Vernazza et al. 2011;
Viikinkoski et al. 2017). We see this as a reasonable division of
the M-class to further dissolve the compositional degeneracy of
the X-complex. However, this division cannot be done based on
spectra alone. To not increase the entropy of the taxonomy in a
false direction, we refrain here from dividing the M-class.

A total of 142 asteroids (6.7%) are classified as M-types in
this study. The main clusters containing M-types are clusters 22,
37, and 46. Smaller contributors are clusters 17 and 35. All these
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clusters make up the X-complex in this taxonomy, and the spectra
are split into E, M, and P as described in Sect. 3.4.2. Additional
members of the M-class are found in clusters 23 and 24, which
are spectrally close to L- and K-types.

4.4. Endmembers: E-types

E-type asteroids are linked to the enstatite achondrites (Gaffey
et al. 1992). Their standout feature is a visual albedo generally
above 50%, see Fig. 14. This unique property makes them easy
to recognise in the reduced latent space, where they exhibit large
absolute values in z2 and z3, with the former shown in Fig. 15.

Spectrally, E-types have a steep visible slope before flatten-
ing out in the NIR. In the case where the albedo observation is
missing, E-types are degenerate with all classes of the M-complex.
As an example, we observe samples of (44) Nysa located in sub-
panels a and d, around the K- and the L-types, correctly identified
as an E-type, due to the albedo observation. However, the third
sample in subpanel b lacks an associated albedo value and is
classified as an M-type. As for L and M, we find a large intrinsic
variability of the samples of individual asteroids in the E-class.

Most E-types in Tholen (1984) are classified as Xe in the Bus-
DeMeo system due to the presence of the e-feature at 0.5 µm. In
Fig. 16, we see that the e-feature is overall sparse compared to
the k-feature. Thirteen samples in the M-complex exhibit the fea-
ture, while 65.4% of samples lack the corresponding wavelength
region observed. Of the 13 samples, 4 are classified as E-type.
Considering the relative sizes of the M- and E-class, the latter are
hence more likely to exhibit the feature. We do not observe a
clustering of the e-feature.

The bias towards E over M for e-feature presence may be of
observational nature. As an abundance of metal on the surface
of M-types may lead to a drop-off of the spectral reflectance
in the UV, the 0.5 µm feature might not be observed as the
reflectance does not increase again towards smaller wavelengths.
The band is associated with the sulfide mineral oldhamite present
in aubrites (Watters & Prinz 1979) or to titanium-bearing pyrox-
ene (Shestopalov et al. 2010). The prototype for this feature is
(64) Angelina, while the E-class archetype (434) Hungaria does
not present it. The k-feature is present in 30.8% of E-type sam-
ples, while 36.9% of samples lack the corresponding wavelength
region observed.

(214) Aschera highlights the benefit of resurrecting the visual
albedo. Since its classification as E-type in Tholen & Barucci
(1989), it has been classified as X, B, Cgh, and C in different works
(de León et al. 2012; DeMeo et al. 2009; Lazzaro et al. 2004).
With a visual albedo above 50%, (214) Aschera is here classi-
fied as Ek-type and concludes its spin through the proverbial
‘alphabet soup’. Observations of (64) Angelina, (214) Aschera,
and (434) Hungaria are highlighted in subpanel j of Fig. 15.

A total of 46 asteroids (2.2%) are classified as E-types in this
study. They are predominantly located in cluster 35, though other
clusters of the M-complex may also contain single samples of E-
types. These are identified and assigned to the E-class in a late
branch of the decision tree using the albedo distributions of E, M,
and P given in Fig. 9. E-types also appear in cluster 44 among
the S-types, where they are identified based on a two-component
GMM fitted to the albedo distribution of the cluster.

4.5. S-complex: S, Q

The S-complex is by far the largest complex in terms of indi-
vidual asteroids, in this work and in previous taxonomies. This
can be attributed to observational biases such as the numeric
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Fig. 17. As in Fig. 11, but for the data space properties of the S-complex.
The albedo distribution of the S-complex is 0.24+0.10

−0.07.

dominance of the S-types in the inner main belt and near-Earth
space (Binzel et al. 2019; DeMeo & Carry 2013, 2014) and the
high average albedo of more than 20%.

The abundance of S-types makes their homogeneity both in
spectra and albedos as shown in Fig. 17 even more remarkable.
While trends in the slope and the silicate features at 0.9 µm,
1.0 µm, and 1.9 µm are observable, these are primarily contin-
uous trends and well explained by variations in the mineral
composition, in particular olivine and pyroxene, as well as trends
of thermal alteration in ordinary chondrites (Eschrig et al. 2022;
Vernazza et al. 2014), ). S-types are one of two classes of aster-
oids that have an established meteorite analogue; they were
linked to ordinary chondrites by the JAXA Hayabusa mission
(Nakamura et al. 2011). This linkage in combination with the
wealth of data on ordinary chondrites and S-types gives a solid
understanding of the spectral weathering processes occurring on
the surfaces of the minor bodies (Brunetto & Strazzulla 2005;
Chrbolková et al. 2021; Thomas et al. 2012), which, unlike the C-
complex members, shows a universal trend of surface darkening
and spectral reddening with the surface age.

We divide the S-complex into two classes: S and Q. Includ-
ing the endmember classes A, R, and V, we establish all classes
defined in the Tholen (1984) system while extending it with
the O-class. Compared to the Bus-DeMeo system, we reduce
the taxonomy by subclasses of the S-class, as we explain in the
following.

4.5.1. S-types

While class C has been split into subclasses since early taxo-
nomic efforts (Gradie & Tedesco 1982; Tholen 1984), the S-class
was not divided until Bus & Binzel (2002a) as the silicaceous
surfaces are particularly subject to changes in slope and band
structure induced by phase-angle effects (Sanchez et al. 2012)
and space weathering (Strazzulla et al. 2005).

The Bus-DeMeo system accounts for these effects by sub-
tracting the spectral slope before classification; however, as
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Fig. 18. As in Fig. 12, but for the member classes of the S-complex. For increased resolution of the S-class, the A- and V-class are only shown
partially.

outlined in previous sections, the partial observations prevent
us from applying this taxonomy. Instead, we rely on the inter-
pretation of the latent components to serve as vectors in the
compositional analysis of the S-types.

The second and third latent components both resemble pyrox-
ene as this mineral dominates the S-class, in addition to the
large contribution in terms of variance provided by the V-types.
The first component resembles the slope, hence we can approxi-
mate the vector of space weathering within the S-complex with
it (e.g. Brunetto et al. 2006). S-types denoted with the w-suffix
for weathered in the Bus-DeMeo system exhibit higher z1 scores
than their class siblings with fresh surfaces. The degeneracy
between a weathered S-type and an olivine-rich S-type (Sa in the
Bus-DeMeo system), which is redder by mineralogy rather than
by surface alteration, is resolved in the third and fourth latent
component, which separates the pyroxene-olivine composition
of objects.

As a practical example, in subpanel d in Fig. 18 we show
the Bus-DeMeo Sa-types (984) Gretia and (5131) 1990 BG and
the Sw-types (1019) Strackea and (4713) Steel. The subpanel h
shows that both Sw-types have below average olivine compo-
nents, indicating that the red surface is indeed due to weathering;
also shown in this subpanel is the S-type (1036) Ganymed.

(984) Gretia is classified as A-type in this study due to its high
z4 score (see subpanel f in Fig. 18).

The Bus-DeMeo system further recognises Sq-, Sr-, and Sv-
types in addition to the regular S-types. The prototypes given in
DeMeo et al. (2009) for these subclasses are highlighted respec-
tively in subpanels g ((3) Juno, (11) Parthenope, (43) Ariadne),
i ((237) Coelestina, (808) Merxia, (1228) Scabiosa), and j
((2965) Surikov, (4451) Grieve) in Fig. 18. The continuous distri-
bution between the main S-complex and the subclasses confirms
our decision to not subdivide the S-class.

A total of 898 asteroids (42.3%) are classified as S-types in
this study. The class is made up of several clusters: 0, 3, 6, 11,
14, 20, 21, 30, 33, 38, 39, 40, 42, and 47. Clusters 4, 8, 10, 43,
and 44 contain members from other classes, which we divide via
GMMs, as described in the respective class descriptions (L, D, R,
D, and E, in order of the clusters).

4.5.2. Q-types

Q-type asteroids are mostly found in the near-Earth asteroid pop-
ulation and resemble spectrally the ordinary chondrites in the
meteorite collection (Binzel et al. 2004c). Compared to S-types,
Q-types have a wider 1 µm band and a neutral to blue slope over
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Fig. 19. Distribution of the S-complex endmember classes A, O, R, and
V in the last two components of the latent space.

the whole spectral range (see Fig. 17). The albedo distribution
is more extended towards higher albedo values, with values of
20%–35%, in agreement with space weathering models predict-
ing darkening of silicaceous asteroids with increasing surface
age (Brunetto et al. 2006).

In latent space, Q-types occupy the blue end of the S-complex
in z1. They are also distinguished from the less weathered S-
types in the z2-z3 space based on their high z3 scores due to the
wide 1 µm band. The archetype (1862) Apollo and class member
(54827) Kurpfalz are highlighted in subpanel b in Fig. 18.

A total of 107 asteroids (5.0%) are classified as Q-types in
this study, 83.2% of which are near-Earth asteroids, which is
considerably higher than the average of 34.4% over all asteroids
in the input data. They populate clusters 16 and 48, as well as
the diffuse cluster 13, further outlined in Sect. 4.6.3. We con-
sidered merging the Q-class into the S-class as it represents the
overall continuity in the S-complex. However, as for the Z-class,
the orbital distribution of the Q-types convinced us to keep this
class.

4.6. Endmembers: A, O, R, V

The endmembers of the S-complex are the well-established
classes A and V and the two classes that were initially built around
single objects, O and R. Their distribution in the third and fourth
latent scores is given in Fig. 19.

4.6.1. A-types

A-type asteroids are differentiated asteroids linked to brachinite
achondrites (Burbine et al. 2002; Cruikshank & Hartmann 1984;
DeMeo et al. 2019) and are easily recognised in spectral space
by their strong red slope and deep olivine imprint at 1 µm (see
Fig. 17). The albedo is within the complex average of about 20%–
30%.

In latent space, the red colour of A-types leads to a high
score in z1, forming a diffuse branch off the S-type population.
We highlight the prototypes (246) Asporina, (354) Eleonora, and
(446) Aeternitas in subpanel e in Fig. 18. Further characteristic
of A-types is a high z4 score due to the high olivine content (see
Fig. 19). Of all the classified asteroids, A-types have the highest
z1 and z4 scores. We note that all three spectra of Mars-Crosser
(1951) Lick are exceptionally red, even among A-types (Brunetto
et al. 2007).

A total of 32 asteroids (1.5%) are classified as A-types in this
study. They fall into clusters 9, 12, 27, and 49.

4.6.2. O-types

The class O was introduced in 1993 for supposedly ordinary-
chondritic (3628) Boznemcova (Binzel et al. 1993). Its notewor-
thy characteristic is the wide round 1 µm feature as shown in
Fig. 17, placing it between the known A-, Q-, and V-types. The
albedo is close to the S-complex average at 25%.

None of the previously classified O-types, except for
archetype (3628) Boznemcova remains as an O, and a compar-
ison of these objects in spectral space showed little resemblance.
While we assign with (7472) Kumakiri a second asteroid to the
class, we find in this work that (3628) Boznemcova remains
without a true spectral sibling. (7472) Kumakiri was previously
classified as V (Solontoi et al. 2012); however, its spectral resem-
blance to (3628) Boznemcova has been pointed out by Burbine
et al. (2011).

The unique appearance of the O-types can be seen by their
position in the latent space shown in Figs. 18 and 19. The
depth and shape of the 1 µm band in combination with the
lack of overall slope place the O-types (3628) Boznemcova and
(7472) Kumakiri between the classes Q and V in z1–z2 (see
subpanel a in Fig. 18), while in z3-z4, they are closest to A-types.

Two asteroids (0.1%) are classified as O-types in this study.
We debated whether keeping the O-class in the taxonomy is com-
patible with the overall approach of data-driven clustering. In
the end, the unique feature and position of (3628) Boznemcova
convinced us, although an argument against single-object classes
can be made. The O-class was difficult to carve out from the clus-
ters using the given method. It is derived from a three-component
mixture model of the already diffuse cluster 13, which is split
into C, O, and Q. Any assignment of the O-class by the classifica-
tion tool should undergo visual scrutiny and direct comparison
to the spectrum of (3628) Boznemcova.

4.6.3. R-types

The R-types are the second niche class of this taxon-
omy, built around (349) Dembowska. The unique nature of
(349) Dembowska is recognised jointly with that of (4) Vesta in
early works of taxonomy (Chapman et al. 1975; Zellner & Gradie
1976) and the R-class was introduced in Bowell et al. (1978).
However, the A-class, which was split off the R-class in Veeder
et al. (1983), has since been absorbed into most R-types. The
continuity between A and R is visible in Fig. 19.
R-types show 1 µm and 2 µm features which are deeper than

those in S-types. The width of the 1 µm is between the V- and the
Q-types. They have albedos at the upper end of the S-complex dis-
tribution, around 28% (see Fig. 17). The spectral appearance is
associated with low-iron ordinary chondrites (Zellner & Gradie
1976). We note that of the four samples of (349) Dembowska
two are classified as R and another two as V (see subpanel c
in Fig. 18, where we also give the position of R-class member
(8693) Matsuki).

A total of 10 asteroids (0.5%) are classified as R-types
in this study. The class is derived from cluster 10 in a two-
component GMM fit in z1–z2, where objects with lower z2 scores
are assigned to the S-class.

4.6.4. V-types

(4) Vesta was the first asteroid to be observed spectrophoto-
metrically (McCord et al. 1970) and the V-types have been
an established and easily-recognizable class in all asteroid tax-
onomies since Tholen (1984). They are the second class, in
addition to S, with an established meteoritic analogue, the HED
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meteorites (e.g. Kelley et al. 2003). The class makes no excep-
tion here; its members are differentiated easily in both z2 and z3
due to the large contribution of pyroxene to the spectral appear-
ance giving rise to the characteristic deep 1 µm and 2 µm features
(see Figs. 17 to 19). The class archetype (4) Vesta is highlighted
in subpanel a in Fig. 18.

The large class variance in z2 and z3 represents high variabil-
ity in terms of band depth and position in the 0.9 µm and 2.0 µm
features. However, we do not identify a subpopulation based on
the band parameters, as was suggested by Binzel & Xu (1993).

A total of 142 asteroids (6.7%) are classified as V-types in
this study. V-types populate clusters 7, 15, 18, 28, 32, and 45.
V-types with a blue slope in the NIR further share the diffuse
cluster 41 with the B-types.

5. Classification

In this section, we introduce the classification tool described in
this work. We demonstrate the probabilistic classification results
using asteroid observations with different wavelength regions
covered. We further investigate degeneracies in the classification
space. Finally, we compare the results obtained in this taxonomy
to the previous systems.

5.1. Classification tool: Classy

To facilitate the classification of asteroid observations within the
framework of this taxonomy, we provide the CLAssification of
a Solar System bodY (classy13) tool written in Python. It is
able to interactively smooth the input spectral observations prior
to resampling them to the required wavelength grid, to automati-
cally apply the necessary pre-processing steps outlined in Sect. 2
to both spectra and albedo, to identify features in the spectra as
outlined in Sect. 3.4.3 (either fully automated or guided by the
user), to execute the cluster-to-class decision tree, and to return
the probabilistic classifications for each observation.

The classy tool provides a command-line interface writ-
ten in Python and is available for Windows, MacOS, and
Linux. The software is actively maintained and developed by the
authors.

5.2. Class degeneracies

The probabilistic nature of the classifications in this taxonomy
allow the degeneracies between classes to be quantified in cer-
tain wavelength regions and in albedo. One example is given in
Sect. 4.1.1, where we point out the degeneracy of B and K in the
case of a NIR-only observation.

We can quantify class degeneracies for three datasets in this
work, with the aim of reflecting the most commonly available
observation ranges of asteroid spectra: the 2983 spectra used to
devise the clustering, the 2923 visible-only spectra shown in grey
in Fig. 2 with 81.4% albedos observed, and the 2813 spectra
from the clustering sample which have NIR information. For the
last, we remove all observations of wavelengths below 0.8 µm
and the albedo information present in the samples. We refer to
these samples as the complete, the visible-only, and the NIR-only
datasets; however, this wording is not entirely accurate as more
than 50% of the samples in the complete sample are NIR-only
spectra and the visible-only sample contains more than 80% of
albedo observations.

13 https://github.com/maxmahlke/classy
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Fig. 20. Confusion matrix between the classes defined in this taxonomy
in the visible-near-infrared and albedo input space. For each class in
the taxonomic scheme, we give the average probability of its samples
to be classified as any other class based on the complete dataset. The
Ch-class is missing as it relies on the detection of the 0.7 µm h-feature
and does not have an associated class probability. For better readability,
the main matrix diagonal corresponding to the equal-class cases is left
empty. These values are generally above 80% and lowest for K, L, M,
and R.

5.2.1. Complete sample

To estimate the class degeneracy in the complete dataset we com-
pute the average probability of belonging to any other class for
all samples assigned to a given class. This comparison is given in
Fig. 20. The Ch-class is missing as it relies on the detection of the
h-feature, and as such does not have an associated class probabil-
ity. Larger matrix element values indicate a higher degeneracy
between the classes. A large sum per matrix row indicates that
the class assignment is overall less certain.

Figure 20 shows the intuitive result that endmember classes
such as A, V, and Z are assigned with a large probability. The
largest degeneracies in pairs of classes are between B- and C-
types and R- and S-types. Neither result is surprising as they
overlap in latent space, and even in visual inspection these
classes can be difficult to tell apart. The largest uncertainty over-
all for a single class (given by the sum per row in Fig. 20) is
around 20 % for K, L, and M and also for the R-types. For the first
three, we already pointed out in Sect. 4.3 the similarity in data
space between these classes, hence this result is again expected.

5.2.2. Visible-only sample

The estimation of the class degeneracy is repeated for the visible-
only dataset after classifying the samples therein using the
classy tool. Figure 21 shows a result similar to that for the
complete dataset, except that the overall values of uncertainty
increase. Instead of 80%–99% certainty in the class assign-
ment, we obtain values between 63%–91%. Except for this
overall change in scale, we do not observe significant differences
between the results for the visible-only and the complete datasets.
K, L, and M are among the least-certain classes, while O-types
have the largest uncertainty due to the missing 1 µm band. For
classes from the M- and S-complex, we see an overall increasing
probability to be classified as S-type.
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Fig. 21. As in Fig. 20, but using the dataset of 2923 visible-only spectra
with 81.4% albedo observations. The colourbar scale is different to that
in Fig. 20. The main matrix diagonal values are between 63%–91% and
lowest for K, L, M, and O.

5.2.3. NIR-only sample

The class degeneracy is next calculated for the NIR-only spectra
that are part of the input observations used to train the MCFA
model. We remove the albedo information present in 78.5% of
the samples prior to classifying them. The confusion matrix is
shown in Fig. 22. The overall scale of the uncertainty in the
class assignment is between the results for the complete and
the visible-only dataset, with the maximum average degeneracy
between two classes just over 25% between P and C, likely due
to both the missing albedo information and the truncation of the
broad 1.3 µm feature in the C-types. We note that no sample is
classified as E-type, due to the missing albedo information, and
no sample is classified as O-type, as both (3628) Boznemcova
and (7472) Kumakiri are classified as Q without the visible-
wavelength information. The bowl-shaped 1 µm band of the
O-types extends below the 0.8 µm limit we apply to this dataset,
hence this misclassification is acceptable. The expected degen-
eracy between B and K in NIR-only data is not visible in Fig. 22
due to the presence of the 1 µm information. While visible-only
spectra lead to uncertainty among the M- and S-complexes, in
particular with respect to the S-types, this calculation shows that
NIR-only spectra lead to greater confusion between the C- and
the M-complexes.

We conclude that the class degeneracies in the complete,
visible-only, and NIR-only samples follow an intuitive behaviour:
the largest classes in terms of number of samples (S, C, and M)
become more probable with decreasing observational data. This
is in line with the established classification guideline that, when
in doubt, assignment to small classes should only be done on the
basis of convincing observational evidence.

5.2.4. Complete versus visible-only sample

Another way to investigate class degeneracies is the comparison
of classifications resulting from samples with different wave-
length regions observed. There are 267 asteroids present in both
the complete and the visible-only datasets with a total of 328
observations. For these asteroids, we compare the resulting clas-
sifications based on the samples in both datasets, shown in
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Fig. 22. As in Fig. 20, but using the dataset of 2813 NIR-only spectra
without albedo information. The colourbar scale is different to that in
Fig. 20. No observation in this sample is classified as E or O. The main
matrix diagonal values are between 55%–99% and lowest for M and P.

Fig. 23. Each row gives for each class in the taxonomy the frac-
tion of asteroids classified as any class based on the visible-only
dataset. We note that the figure does not account for the different
samples sizes: there are 2 samples classified as E in the intersec-
tion of the dataset and 140 classified as S. No samples classified
as A, O, and X are present in both samples.

Figure 23 shows that Ch, S, and V are the most reliable when
classified using visible-only data. Ch benefits from the binary
classification which takes place once the h-feature is observed.
The members of the M-complex show increasing degeneracy with
the S-class with decreasing near-infrared coverage. The least-
expected degeneracies are Z and C, as well as E and B, however,
they are all based on a single sample.

Both results in Figs. 21 and 23 show that visible-only spec-
tra in combination with the albedo place a strong constraint on
the taxonomic class, as is well-established from the previous
taxonomies which relied on the visible wavelength ranges exclu-
sively. This highlights the strengths of the new method employed
here: NIR-spectra are not strictly necessary to derive a classifica-
tion as incomplete observations can be classified and the albedo
as an accessible observable is accounted for.

We do not repeat this comparison for the complete and the
NIR-only samples as the latter make up a significant fraction of
the former, hence the agreement between the samples would be
overestimated.

5.3. Comparison to previous taxonomies

Class continuity was one of the aspects which we considered
when designing the scheme of classes in this taxonomy. We quan-
tify this goal as above using a confusion matrix, except that we
compare the classes assigned based on the complete dataset to
the most-probable previous classification of the asteroid in the lit-
erature, retrieved for 2676 samples of 1852 individual asteroids
from the SsODNet database. We convert the previous classifi-
cations done mostly in the Bus-DeMeo scheme to this scheme
using the mapping given in Table 2.

Figure 24 shows an overall good agreement of the classes
assigned in this work with the ones from the literature. Notable
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Fig. 23. Comparison of the classifications of 328 samples of 267
individual asteroids resulting from visible-only spectra with 81.4%
observed albedos to the classifications of the same asteroids resulting
from the complete sample classifications. The sample size iis different
in each row: the intersection of asteroids present in both datasets gives
2 samples classified as E using complete samples as well as 2 samples
classified as Z, while there are 140 samples entering the calculation in
the row of S-types. No A-, O-, or X-types are present in both samples.

exceptions are the O-type, which has no legacy members apart
from (3628) Boznemcova as pointed out in Sect. 4.6.2, and the
new Z-class, which hosts almost exclusively previous D-types.
Furthermore, the L loses members to the S as well as O to V.

6. Conclusion

The taxonomic scheme for minor body classification has been
in development for close to 50 yr. During this time, numer-
ous efforts to categorise the observational properties of aster-
oids have been driven forwards through dedicated observational
campaigns and instrumental advancement. We focused on the
methodology and statistical foundation, allowing us to increase
the sample size by an order of magnitude compared to the pre-
vious taxonomy by DeMeo et al. (2009) and to reintroduce the
albedo into the classifying observables as done in Tholen (1984).

The dimensionality reduction and clustering applied to 2983
spectra of 2125 asteroids revealed three main complexes: the
well established C- and S-complexes and a restructured M-
complex. While the S-complex is well understood in terms
of mineralogy and meteoritic analogue material, both the C-
complex and M-complex show a large degree of variability of
so far unknown origin. We derive 17 classes from the three
complexes, where the data-driven clustering is guided by the
previous taxonomies and the goal of class continuity.

A classification tool named classy is available online and
allows the user to classify asteroid observations covering the
spectral VisNIR region and the visual albedo either completely
or partially. The resulting array of class probabilities for each
sample serves to estimate classification uncertainty and possible
taxonomic trends.

We established a methodology for asteroid taxonomy which
is well suited for the current and future datasets of asteroid obser-
vations. The ongoing MITHNEOS survey, the upcoming Gaia
Data Release 3 (including visible spectra, Delbó et al. 2012),
and the planned NEO Surveyor mission (Mainzer et al. 2015)
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Fig. 24. Comparison of the classifications of 2676 samples of 1852 indi-
vidual asteroids classified in the complete dataset to the classifications
in the literature. The literature classifications were mapped into this
taxonomy scheme following Table 2. The number of samples differs
between the rows.

and SPHEREx survey (Ivezić et al. 2022) will provide or con-
tinue to provide spectral and albedo observations of asteroids in
different wavelengths, which are able to be classified within the
framework of this taxonomy.

The dimensionality reduction and clustering are able to
resolve more features and find more meaningful clusters when
fed with more data. It may be worthwhile exploring how the
model properties described in Sect. 3 change when fed with sig-
nificantly more data. Nevertheless, during this work, we found
that the latent space properties show little change whether we
train with 500, 1000, or all samples in the dataset. Instead, we
anticipate that a future taxonomy-revision will benefit more from
an increased feature set. In particular the UV information offered
by the Gaia data may solve degeneracies in the C- and M-complex.
A further improvement should be the addition of polarimetric
data, provided the amount of observations is comparable to the
availability of the other features. The M-complex could benefit,
and we consider that most work is left to be done in this complex.
Extension of the spectral space into the 3 µm region is promising
as well.
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Appendix A: Distribution of albedos in cluster
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Fig. A.1. Overview of the albedo distribution per cluster, including the number N of albedos and the asteroid classes to which the
cluster contributes , excluding classes with fewer than three contributed observations except for cluster 25 which has only three
observations. The classes are sorted by the total number of observations the cluster contributed. The dotted line gives the mean value
of the albedos per cluster except for diffuse clusters and cluster 25. The y-axis limit is different in each row.
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Appendix B: Feature centres and windows

Table B.1. Listed are the mean band centres and the mean upper and lower band limits determined using the visually identified
features in the input data.

Feature Centre / µm Lower Limit / µm Upper Limit / µm

e 0.50± 0.01 0.450 0.539
h 0.69± 0.01 0.549 0.834
k 0.91± 0.02 0.758 1.060

Notes. These values are applied when using the automatic feature detection with the classy tool.

Appendix C: Distribution of spectra and albedos in classes
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Fig. C.1. Distribution of spectral observations over the 17 classes assigned in this taxonomy. The number N of spectral observations
assigned to the class is given under the respective letter. Spectra contributed by diffuse clusters are excluded.
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Appendix D: Cluster-to-class decision tree

Table D.1. Cluster-to-class decision tree.

Cluster Class

0, 3, 6, 11,
14, 20, 21, 30, → S
33, 38, 39, 40,
42, 47

1, 34 → D
2 → B
5, 25, 26 → C
7, 15, 18, → V

28, 32, 45
9, 12, 27, 49 → A
16, 48 → Q
36 → Z

4 P23(z3, z4)/P40(z3, z4) L, S
8, 43 GMM(z2, z4) D, S
10 GMM(z1, z2) R, S
13 GMM(z2, z4) C, O, Q
17, 22, 35, E, M, P, X
37, 46 PE(pV )/PM(pV )/PP(pV )

19 GMM(z1, z4) C, P
23 GMM(z1, z4) L, M
24 GMM(z2, z3) K, M

A, B, C,
29 GMM(z1, z2) D, M, P,

S, Q, V
31 GMM(z3, z4) K, L
37 GMM(z2, z4) L, M
41 GMM(z1, z2) B, V
44 PE(pV )/PM(pV ) E, S

Class is B, C, P, or X and h-feature is present Ch

Notes. Overview of the computation of the asteroid-class probability for each observation based on its cluster probabilities. The upper part of the
table contains clusters whose members are mapped to a single asteroid class. The lower part contains clusters where the resulting asteroid class
probabilities depend on the criterion given in the middle column. GMM(zx, zy) means that the cluster probability is split based on a Gaussian
mixture model with N components fit to all cluster members in zx and zy, where N is equal to the number of possible outcome classes (i.e. each
mixture component represents one candidate class). PX(y) refers to the probability of belonging to the class or cluster X given the value of y. The
last line gives the definition of the Ch-class, which is the last step of the classification.
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Appendix E: References of spectra and visual albedos

Table E.1. Spectroscopic data references.

Alvarez-Candal et al. (2006); Arredondo et al. (2021); Barucci et al. (2018); Bendjoya et al. (2004); Binzel (2001); Binzel et al.
(2001, 2004a,b,c, 2009); Birlan et al. (2004, 2006, 2007, 2011, 2014); Borisov et al. (2017, 2018); Burbine (2000); Burbine et al.
(2009); Bus (1999); Bus & Binzel (2002a,b); Clark et al. (2004, 2009); de León et al. (2010, 2011); De Prá et al. (2018); De Sanctis
et al. (2011a,b); Devogèle et al. (2018, 2019); Duffard & Roig (2009); Duffard et al. (2004); Emery & Brown (2003); Emery et al.
(2011); Fieber-Beyer (2010); Fieber-Beyer & Gaffey (2011, 2014, 2015); Fieber-Beyer et al. (2011, 2012); Fornasier et al. (2007,
2011, 2014, 2016); Gartrelle et al. (2021); Gietzen et al. (2012); Hardersen et al. (2011, 2014, 2015, 2018); Hasegawa et al. (2018,
2021a); Ieva et al. (2018); Jasmim et al. (2013); Kasuga et al. (2013, 2015); Kuroda et al. (2014); Landsman et al. (2015); Lazzarin
et al. (2004, 2005); Lazzaro et al. (2007); Licandro et al. (2018); Lucas et al. (2017, 2019); Marchi et al. (2004, 2005); Marsset
et al. (2014, 2022); Matlovič et al. (2020); Migliorini et al. (2017, 2018); Moskovitz et al. (2009, 2010, 2019); Nedelcu et al. (2007);
Neeley et al. (2014); Ockert-Bell et al. (2008, 2010); Ostrowski et al. (2011); Oszkiewicz et al. (2020); Perna et al. (2018); Pinilla-
Alonso et al. (2016, 2021); Polishook et al. (2014); Popescu et al. (2011, 2012, 2014, 2019); Rayner et al. (2003); Reddy (2010);
Reddy & Sanchez (2016, 2017); Reddy et al. (2011, 2018); Rivkin et al. (2004); Sanchez et al. (2013, 2014); Shepard et al. (2008a);
Sunshine et al. (2007, 2008); Vernazza et al. (2005, 2006, 2014, 2016); Vilas et al. (2006); Willman et al. (2009); Wong et al.
(2017); Xu (1994); Xu et al. (1995); Yang & Jewitt (2007, 2011); Yang et al. (2020)

Table E.2. Data references for albedos, diameters, and absolute magnitudes.

Alí-Lagoa & Delbó (2017); Alí-Lagoa et al. (2013); Alí-Lagoa et al. (2016); Alí-Lagoa et al. (2018); Becker et al. (2015); Benner
(2002); Berthier et al. (2014); Bowell et al. (1994); Chavez et al. (2021); Clark et al. (1999); Delbó & Tanga (2009); Delbó et al.
(2003); Dong-fang et al. (2016); Drummond & Christou (2008); Drummond et al. (2018); Fujiwara et al. (2006); Grav et al. (2011,
2012a,b); Hanuš et al. (2015, 2016, 2017, 2018); Helfenstein et al. (1994, 1996); Herald et al. (2019); Huang et al. (2013); Hung
et al. (2022); Jiang & Ji (2021); Jorda et al. (2012); Keller et al. (2010); Koren et al. (2015); Li et al. (2013, 2016); Licandro et al.
(2016); Magri et al. (2007); Mainzer et al. (2011, 2012, 2014a,b); Marchis et al. (2012); Masiero et al. (2011, 2012, 2014, 2017, 2019,
2020a,b, 2021); Matter et al. (2011, 2013); Mueller et al. (2011); Müller & Blommaert (2004); Müller et al. (2014); Nugent et al.
(2015, 2016); Pravec et al. (2012); Rozitis & Green (2014); Rozitis et al. (2013); Russell et al. (2012, 2016); Ryan & Woodward
(2010); Ryan et al. (2015); Shepard et al. (2008a,b); Sierks et al. (2011); Tatsumi et al. (2018); Thomas (2000); Thomas et al. (1994,
1996, 1999); Trilling et al. (2010, 2016); Usui et al. (2011); Vernazza et al. (2021); Veverka et al. (2000); Viikinkoski et al. (2017);
Yu et al. (2017)
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