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ABSTRACT

Context. Understanding the dynamical evolution of asteroids through the secular Yarkovsky effect requires the determination of many
physical properties, including the rotation period.
Aims. We propose a method aimed at obtaining a robust determination of the rotation period of asteroids, while avoiding the pitfalls
of aliases. We applied this approach to thousands of asteroid light curves measured by the NASA TESS mission.
Methods. We developed a robust period-analysis algorithm based on a Fourier series. Our approach includes a comparison of the
results from multiple orders and tests on the number of extremes to identify and reject potential aliases. We also provide the uncertainty
interval for the result as well as additional periods that may be plausible.
Results. We report the rotation period for 4521 asteroids within a precision of 10%. A comparison with the literature (whenever
available) reveals a very good agreement and validates the approach presented here. Our approach also highlights cases for which the
determination of the period should be considered invalid. The dataset presented here confirms the apparent small number of asteroids
with a rotation between 50 and 100 h and correlated with diameter. The amplitude of the light curves is found to increase toward smaller
diameters, as asteroids become less and less spherical. Finally, there is a systematic difference between the broad C and S complex in
the amplitude-period, revealing the statistically lower density of C-types compared to S-type asteroids.
Conclusions. Our approach to the determination of asteroid rotation period is based on simple concepts, yet it is nonetheless robust.
It can be applied to large corpora of time series photometry, such as those extracted from exoplanet transit surveys.
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1. Introduction

The asteroids forming the Main Belt between Mars and Jupiter
are remnants of the bricks that accreted to form the planets.
Prints of the events that occurred in the early Solar System are
still present in the distribution of their orbit, size, and compo-
sition (DeMeo & Carry 2014; Morbidelli et al. 2015; Clement
et al. 2020). The current population, however, differs from its
pristine distribution. Giga-years of collisions have fragmented
bodies and created clumps of objects called families (Hirayama
1918; Zappala et al. 1990; Milani et al. 2014). All dynami-
cal structures are furthermore secularly spreading through the
non-gravitational Yarkovsky effect (Bottke et al. 2001).

The Yarkosky effect results from the delayed re-emission of
the Solar incident flux and depends on many physical and surface
properties such as diameter, albedo, density, obliquity, and rota-
tion period (Vokrouhlický et al. 2015). Some properties, such as
the diameter, are available for hundreds of thousands of asteroids
thanks to mid-infrared (MIR) surveys such as IRAS, AKARI, or
WISE (Tedesco et al. 2002; Usui et al. 2011; Masiero et al. 2011).
Others, such as the density or thermal inertia, are much less con-
strained and available for only a tiny fraction of asteroids (see
Berthier et al. 2023, for a recent compilation).

Spin properties (rotation period and coordinates) typically
require numerous photometric measurements over a long period
of time, covering several apparitions (Ďurech et al. 2015).
These measurements can be dense-in-time time series, hereafter
⋆ Corresponding authors; vavilov@iaaras.ru;
benoit.carry@oca.eu

referred to as “light curves” (Kaasalainen et al. 2001), or they can
be photometry sparse-in-time, collected by surveys (Kaasalainen
2004). However, owing to the potential multiple period aliases
from sparse data, a light curve often helps to unambiguously
determine the rotation period (Ďurech et al. 2015).

Surveys aimed at discovering and characterizing exoplanets
via the transit method offer a tremendous amount of time series
over wide fields in which asteroids can be searched for (Berthier
et al. 2016; Grice et al. 2017). Recently, Pál et al. (2020) extracted
light curves for 9912 Solar system objects (SSOs) from the
Transiting Exoplanet Survey Satellite (TESS) first data release
(DR1). The released catalog of asteroid light curves and periods
is dubbed TSSYS-DR1. Pál et al. (2020) determined the rota-
tion period of 9912 asteroids by fitting second order Fourier
series. However, in some cases, such as asteroids (118) Peitho,
(511) Davida, and (775) Lumiere among many others, it is not
enough to describe accurately the light curve as second-order
in the Fourier Series (Scheirich & Pravec 2009), leading to
potentially erroneous period determinations.

In this work, we aim here to analyse the large sample of
light curves released by Pál et al. (2020) with a robust period-
determination algorithm. We present examples demonstrating
that a Fourier series of the second order is often not sufficient
to describe asteroid light curves. The article is organized as fol-
lows. In Sect. 2, we describe how we model the light curve of
asteroids. In Sect. 3, we explain how we selected the optimum
solution among different potentially degenerated solutions. We
then present the results of the analysis of the TESS light curves
in Sect. 4. We validate these results in Sect. 5 and we discuss
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their implications in Sect. 6. Finally, we give our conclusions in
Sect. 7.

2. Modeling asteroid light curves

The apparent visual magnitude of an asteroid depends on the
geometry of observation and can be described as (Bowell et al.
1989):

V = H + 5 log10 r∆ − 2.5 log10 ϕ(α) + g(t), (1)

where H is the absolute magnitude of the asteroid, r and ∆ are the
heliocentric distance and range to the observer (in au), g(t) is a
periodic function related to the asteroid shape in rotation, and the
phase function ϕ(α) describes how brightness evolves with the
phase angle α (the Sun-asteroid-observer angle; see Bowell et al.
1989; Muinonen et al. 2010, for the different functions in usage in
the community). The present study focuses on the determination
of the period of the g(t) function.

2.1. Reduction to unit distances

To find the rotation period of an asteroid, we first take into
account the change of visual magnitude occasioned by the
changing distances due to the asteroid and Earth orbital motions.
For each observation, i, we compute:

V ′i = Vi − 5 log10 ri∆i. (2)

which depends only on the asteroid absolute magnitude, rota-
tion, and phase function. We also correct the timing of the i-th
observation by:

t = t′ − c
∆i
, (3)

where c is the speed of light, t′ is the recorded observation epoch,
and t is the actual epoch for the observed visual magnitude.

Before moving into further analysis, we exclude the obser-
vations deemed to be unreliable. We exclude all observations
with flags different from 0 (see Table 1 in Pál et al. 2020, for
a full description of the flags). Observations with flag values 128
and 16 384 (manual exclusion for anomaly or because outlier)
were only excluded from the first iteration of fitting and may be
included in the next iterations according to a 3σ rule.

2.2. Fourier fitting and phase function

The reduced V ′ magnitude fluctuates because of the phase func-
tion ϕ(α) and the periodic function g(t), with a period equals
to the asteroid’s synodic rotation period. The function g(t) is
decomposed into a Fourier series:

g(t) =
k∑

j=1

A j cos(2π f jt) + B j sin(2π f jt), (4)

where f is the frequency of rotation (cycles per day), t is time (in
days), k is the maximal number of Fourier series, and {A j, B j} the
amplitude coefficients at each frequency. In the present analysis,
we consider values of k up to k = 10.

The phase angles of asteroids observed by TESS typically
span a small range or a few degrees only, around 3◦ of phase,
with minimum values of typically 3◦ and maximum values
around 8◦ (Fig. 1). The lack of coverage of the opposition surge

Fig. 1. Top: distribution of the maximal, minimal, and range of phase
angles. Bottom: range of phase as a function of the minimum phase
angle.

implies that the system of equations is ill-conditioned for finding
the parameters of the usual phase functions H,G (Bowell et al.
1989) or H,G1,G2 (Muinonen et al. 2010). We refer to Mahlke
et al. (2021) for a discussion of phase coverage. We hence follow
here the approach by Pál et al. (2020) of describing the phase
function as a second-degree polynomial:

ϕ(α) = c0 + c1α + c2α
2.

This approach precludes the determination of the absolute
magnitude, H, of an asteroid, but that is not our goal. On the
other hand, the fitting is accurate and well conditioned. We limit
here the possible range of values for c1 and c2 to ascertain the
physical results (i.e., increasing reduced magnitude with phase
angle). We used the H,G phase function (Bowell et al. 1989) as
a reference and assumed that the parameter G cannot take values
outside the given range (−0.25, 0.95). The H-G function cannot
be properly approximated by a second degree polynomial. That
is why we find an approximation on the arc of 1◦. For each angle
α from {1◦, 2◦, 3◦, ..., 120◦} we construct two phase curves with
(Gmax = 0.95 and Gmin = −0.25). We then fit parameters c0, c1,
and c2 on the arc (α − 0.5◦, α + 0.5◦). The maximal and minimal
values for c1 and c2 found this way for a particular phase angle
are then used as boundaries for the fit of TESS data. We should
note here that the free term c0 encompasses H, which is removed
from the fitting procedure.

For a given frequency, f , we found the parameters c0, c1,
c2,
{
A j, B j

}
j=1,k

via a least-squares minimisation. We took the
weights of observations into account according to chapter VIII
in Linnik (1961). We also excluded observations differing from
the fit by more than 3σ iteratively until the procedure converged.

We put “soft” limitations on the parameters c1 and c2 in
the least-squares fitting procedure, so that these values cannot
be substantially outside the interval [cmax

j , c
min
j ]. We added the

following two equations to the system of conditional equations
(Gubanov 1997, p. 73):

c j = (cmax
j (α) + cmin

j (α))/2, j = 1, 2, (5)

where α is a minimal phase angle in the observation data
of the asteroid. These equations are added with weights of
1
/
(cmax

j (α) − cmin
j (α))/2 . The aim of it is to guide the fitting pro-

cedure toward mean values of c1 and c2 of (cmax
j (α)+ cmin

j (α))/2,
with standard deviations of (cmax

j (α) − cmin
j (α))/2. We present in

Fig. 2 an example of the fitting procedure, on asteroid (3) Juno.
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Fig. 2. Example of light curve fit for asteroid (3) Juno. Top: TSSYS-DR1
data as function of time. Observations are plotted as dots, color-coded
by epoch. Crosses represent data rejected by the fitting procedure (see
text). The line represents the best fit. Middle: same as above, folded over
a rotation period (7.2100.001

−0.001). Bottom: periodogram showing the resid-
uals of the fit as a function of rotation frequency (number of cycles per
day). The horizontal dashed line correspond to the significance thresh-
old (sigma-level, see text).

3. Selection of the best model

To find the rotational period, we sampled different frequencies,
f , and for each of them we fit via least-squares routine the 2k +
3 parameters c0, c1, c2,

{
A j, B j

}
j=1,k

. We did not simply select
the solution with the lowest residuals; rather, we imposed the
following criteria to be fulfilled.

3.1. Defining the frequency range

First, at least two full periods of the asteroid rotation must have
been observed. Shorter coverage could indeed result in spurious
period determination. We thus set a minimal frequency:

fmin =
2

tmax − tmin
, (6)

where tmax and tmin are the epochs of the last and first observa-
tion, respectively. Owing to the TESS observing strategy, each
sector is observed for approximately a month, namely: fmin >
0.05 days−1

Furthermore, TESS full-frame images are taken every 30 min
approximately (Pál et al. 2020). The maximal possible frequency
is thus analogous to a Nyquist-limit, adapted to the case of irreg-
ular sampling (Eyer & Bartholdi 1999): where p is the largest
value, such that each ti can be written as ti = t0 + ni p, for inte-
gers, ni; then the Nyquist frequency is fNy = 1/(2p). AA direct
citations not needed in AA. Of course, the equality ti = t0 + ni p
cannot be fulfilled precisely, so we allowed for a 2% accuracy
for this equation. For most asteroids in TSSYS-DR1, the Nyquist
frequency is approximately 24 days−1, implying a minimal rota-
tional period of about 1 hour (however, in some cases, fNy

reached about 48 days−1). We set the right end of the frequency
interval to 24 days−1, thus: a minimal rotation period of 1 hour.

We note that the maximal frequency decreases with the num-
ber of Fourier series (i.e., greater k). The k series contains a
term in cos(2π f kt) which period is 1/k f , and hence the maxi-
mal frequency is fNy/k. We consider 40 001 possible frequencies
on the interval between fmin and min( fNy, 24) for k = 1. For
k > 1, we keep the frequency steps and the interval becomes
[ fmin,min( fNy/k, 24)].

3.2. Choosing the optimum fit

For each number of Fourier series, k, we first found the best
fit according to our criteria (Eq. (7)). We then compared fits
obtained with different k to select the final solution.

The main criterion is the minimal value of standard deviation
of one observation σ, which is a classical unbiased estimate of a
observational dispersion (Linnik 1961):

σ2 =
Nobs∑

j p j

∑
i pi(Oi −Ci)2

(Nincl − npar)
, (7)

where Oi and Ci are i-th observation and computed magnitude,
pi is the weight of i-th observation (taken as 1/σ2

i ), Nobs is the
number of observations, Nincl is the number of observations
included in the fit, and npar is the number of fitted parameters
(2k + 3).

We note that the number of observations included in the
fit can slightly differ for each frequency. The factor Nobs in
Nobs

/∑
j p j is required to bring the value σ to the observational

error with mean weight. This does not change the result but helps
us understand the accuracy of the fit. We chose the model with
the lowest value of σ as solution for this number of Fourier
series.

If the shape of an asteroid is well-described by a tri-axial
ellipsoid, the light-curve is expected to display two local max-
ima and two local minima. However, the number of local maxima
from fitting can be up to k. For instance, eight local minima can
appear with eight Fourier series. This point is critical as many
objects present two solutions for the frequency, only differing
by a factor of two. There are cases where the two solutions are
in reality associated with the same period (e.g., Fig. 3), particu-
larly if one of the solutions refers to a light curve with one local
maxima only.

We repeated the above procedure for each number of Fourier
series, k, from 1 to 10. For each k, we have a single candidate
for the final model and final period. To choose among these, we
used the F-test and computed it for each pair of models. The F-
test tells us whether the difference between two dispersions is
significant or not. The F-test gives us the probability (p-value)
for the first model being better than the second one. In total,
we obtained 10 × 9/2 = 45 results for the F-tests. Following the
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Fig. 3. Illustrations of the advantages of the method (symbols are the same as Fig. 2). Left: clear period determination, but it would be (erroneously)
twice smaller if only the second order of the Fourier series was used. Center: two solutions with acceptable sigma values but corresponding to the
same period – if the number of local maxima is taken into account. Right: all solutions below the significance level, thus, the uncertainty interval
is 2–237 h, i.e., the period is not determined.

Occam’s razor rule, we chose the model with smallest possible
number of Fourier series. We chose the smallest k for which no
other model is significantly better, namely, such a k value that
all the p-values of F-tests of k and any j are less than 95%.

For this chosen model, we computed its sigma-level (F-
test, p-value 90%). With the F-test, we computed pvalue =
Ftest(σ1, σ2, n1, n2). However, we can also solve the reverse prob-
lem: for a given σ1, the aim is to find the σ2 of the second
model, so that the p-value is 90%. In this case, we used the
same number of used observations (n1 = n2). This is how we
define the sigma-level. All the models with σ values lower than
this threshold are also possible, with their associated rotation
period. As a result, we provide a range of valid rotation period
and, whenever applicable, all the other potential periods that are
not in the computed interval (i.e., generally a multiple of 2 of
the period). In the case of a high number of possible periods, we
provide the whole interval for all, which means that the result
is imprecise.

Also, we checked whether using a different number of
Fourier series can lead to any plausible solutions (the σ value
of which is lower than for the chosen one). In general, this is the
case when for a higher order of Fourier series, the frequency can
only be low (so the period is high) and the period is doubled or
even tripled. These periods might be realistic (i.e., the σ is still
lower than for chosen solution), but still unlikely.

4. Results

From the sample of 9912 asteroids with TESS light curves, we
found a period for all, with 4839 (48.8%) for which the period
has been determined with a 33% relative error (i.e., the uncer-
tainty on the period is at most a third of the period). Hereafter,
we consider as “valid” the periods determined with this level of
precision and “reject” the others. While there is a long tail of less
precise determinations (Fig. 4), the determinations are more pre-
cise than a percent for 3042 (30.7%) asteroids and 10% for 4521
(45.6%) asteroids.

We present in Fig. 5 the distribution of the validated and
rejected solutions as a function of the apparent magnitude of the
asteroids during TESS observations and the amplitude of their
light curves. There is a clear trend with rejected solutions being
mostly for the faintest targets with low amplitude light curves.
Hence, inaccurate solutions are due to a level of noise that is too
high compared to the signal, as expected.

Finally, 4366 (44.0%) asteroids have a unique, non-
ambiguous, rotation period. The remaining 492 (5.0%) asteroids
have a single other possible period in 277 (56.3%) cases, and
several ambiguous periods in 215 (43.7%) cases. The distribu-
tion of these degenerated solution is not random but corresponds
to period aliases, as visible in Fig. 6. All the data are available as
electronic format on the CDS.
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5. Validation

We assessed the quality of the periods determined here with
three comparisons: the original TSSYS-DR1 results of Pál et al.
(2020), the rotation periods on an independent extraction of
TESS photometry by McNeill et al. (2023), and other values from
the literature (providing periods from altogether different data
sets). As visible in Fig. 7, there is a significant spread among
periods when comparing the present determinations with those
from Pál et al. (2020). It, however, mainly concerns rejected
periods. Among the validated solutions (4829, i.e., 48.8% of
the sample), the comparison is much better and 78.5% of the
solutions agree within 1%. Another 3.6% correspond to period
aliases (half or double period). The comparison with McNeill
et al. (2023) presents a larger spread, even in the validated
solutions (3601, i.e., 40.0% of the common sample). Overall,
63.1% of the solutions agree within one percent and an addi-
tional 2.9% correspond to period aliases. While based on similar
original TESS data, the two studies extracted the photometry and
determined the period using different methods, explaining the
differences observed here. In their study, McNeill et al. (2023)
actually reported numerous cases of disagreement with Pál et al.
(2020), while about 80% of solutions agreed. For instance, while
mainly periods reported by Pál et al. (2020) correspond to either
half or twice the period reported here (Fig. 7), those reported by
McNeill et al. (2023) almost never correspond to half the period
reported here.

We then made a comparison with periods reported by other
authors on different data sets (excluding TESS). We thus com-
piled the rotation period for each asteroid in our sample, using
the ssoCard of SsODNet1 through its rocks2 interface (Berthier
et al. 2023). We focus on period determinations with a quality
flag of 3, that is, those that are deemed definitive, following the
criterion by LCDB (Warner et al. 2009). As visible on Fig. 7,
there is globally a better agreement with 1483 period determina-
tions (for 670 unique asteroids). We find 91.0% agreeing within
one percent, with additional 0.9% corresponding to aliases. This
highlights the robustness of the method used here to select the
period among the different possible solution (Sect. 3).

There are three main advantages of the technique presented
in the present study. First, we considered several number of
Fourier series, while also taking into account the number of
local maxima (there should be at least two local maxima, other-
wise we would be doubling the period). We assume that the light
curve is a result of the shape features. In Fig. 3 one can see the
result for asteroid (511) Davida. The period is clearly determined
and in agreement with many previous studies from ground-based
light curve observations (e.g., De Angelis 1995; Torppa et al.
2003; Cellino et al. 2019; Vernazza et al. 2021); however, at least
the third order of a Fourier series is required. The result for
the second order is twice smaller and coincides with Pál et al.
(2020). Our explanation for this is that the light curve is quite π-
periodic, on the one hand, and it does not resemble a cosine, on
the other hand. Therefore the second-order Fourier series with
twice smaller period can fit the contour of the light curve much
better, but once we take third-order Fourier series, the difference
between the two peaks of the light curve becomes important.

Second, we checked the number of local extrema. We illus-
trate this second advantage with asteroid (699) Heia in Fig. 3.
The lower part of the figure shows that there is two possible solu-
tions with radically different frequencies. However, the second

1 https://ssp.imcce.fr/webservices/ssodnet/
2 https://rocks.readthedocs.io/en/latest/
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frequency of 14.13 cycles/day provides only one local maxima
and hence its period should be multiplied by 2, yielding the same
fit to the data.

Finally, we did not just provide the chosen solution, but all
the possible solutions. Sometimes there can be two or three pos-
sible solutions (periods for which σ is not significantly higher).
These periods are also possible and we report their values. For
some asteroids, the data are not accurate enough to obtain reli-
able results and the range of possible rotational periods ends up
including the entire possible interval: from 2 to 360 h. This inter-
val helps us understand the quality and reliability of the result.
In the case of asteroid 2014 AX12 (Fig. 3), the uncertainty in the
photometry is so high that almost any period can be fitted. The
uncertainty interval for this asteroid is [2 h, 237 h]. This basically
means that the result should not be considered, even though there
is a formal solution associated with the minimal value of σ.

6. Discussion

We present in Fig. 8 how periods derived here are distributed
against the diameter measurements. We also present data com-
piled from the literature (retrieved from SsODNet, Berthier et al.
2023). The limits imposed by TESS observations are clearly
visible. First, the cadence of exposures (30 min) and length of
observations (27 days) limit the range of periods that can be
determined (Sect. 3), between 1 h and 27 days. Second, there
is a clear drop in the amount of solutions below a diameter of
2–3 km. This diameter roughly corresponds to an apparent mag-
nitude of 18 in the asteroid belt, which is indeed the peak in the
magnitude distribution in TSSYS-DR1 data set (Pál et al. 2020).
This distribution, combined with the trend for faintest asteroids
to have the highest rejection rate (Fig. 5), explains the drop of
solutions below 2–3 km in diameter.

The lower limit of 1 h is not reached by any of our solutions.
As also visible in the data from the literature, there is a clear
boundary at 2.2 h which is refereed to as the “spin barrier” and
corresponds to the critical rotation period at which self grav-
ity and centrifugal acceleration are balanced (Pravec & Harris
2000). The situation is different for the upper limit, with longer
rotation periods reported in the literature from long-term cam-
paigns of observation or archival data (e.g., Waszczak et al. 2015;
Erasmus et al. 2021; Marciniak et al. 2021). We note the presence
of a valley around 50–100 h separating the bulk of fast rotators
from the slower ones, with an apparent dependence on diame-
ter. This low-density region was already visible in the rotation
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Fig. 8. Distribution of the rotation period as function of the asteroid
diameter, compared with the literature. The two horizontal dashed lines
represent the minimum and maximum periods that can be determined
here (Sect. 3).

periods determined from K2 by Kalup et al. (2021) and from
Gaia by Ďurech & Hanuš (2023).

We present in Fig. 9 the distribution of the amplitude of
the light curves as a function of the asteroid diameter. We also
present the asteroids reported in the LCDB (Warner et al. 2009)
for comparison. Most asteroids have a diameter between 3 and
20 km. There is a clear trend of higher light-curve amplitudes
toward smaller diameters, revealed by the running average. Such
a trend was already visible in the results of the Palomar Tran-
sient Factory on asteroids (Waszczak et al. 2015). The amplitude
of the light curve is directly related to the change of the projected
area of the shape on the plane of the sky. Smaller amplitudes are
thus indicative of rounder shapes. The trend here is a clear signa-
ture of asteroids being less spherical at smaller diameters. Such
a trend has been reported from the results of 3D shape modeling
of the 42 of the largest (diameter above 100 km) main belt aster-
oids, with an increase of asphericity toward smaller diameters
(Vernazza et al. 2021). The regular increase in amplitude below
the 100 km reveals that the trend continues down to diameters as
small as 2 km (size at which the present data set is limited).

We compare the light-curve amplitude to the rotation period
in Fig. 10, focusing on the shortest rotation periods. The period
distribution is not random, with a limit at the shortest periods
dependent on the amplitude of the light curve. As a guideline,
we present the theoretically largest possible amplitude for bodies
held together by self-gravity only (taken from, Waszczak et al.
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Fig. 9. Distribution of the light-curve amplitude as a function of asteroid
diameter. The asteroids in LCDB (Warner et al. 2009) are plotted for
reference, as well as a running mean (red line) and standard deviation
(shaded area).
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Fig. 10. Distribution of amplitude against rotation period. The gray lines
represent the fastest spin for bodies held together solely by self-gravity
from Waszczak et al. (2015). The fraction of S-types among all asteroids
is indicated between those curves.

2015) for three reference densities: 1000, 2000, and 3000 kg m−3.
There is a clear difference between asteroids in a broad “S” com-
plex (including the S, Q, A, V, E classes) and those in a broad
“C” complex (C, Ch, B, D, P, Z classes, see Mahlke et al. 2022,
for a rationale on this grouping), as expected from the higher
density of the first group. The fraction of S-like asteroids is
higher below the spin limit of 1000 kg m−3, revealing the lower
density of C-like asteroids (below or slightly above 1000 kg m−3)
compared to S-like asteroids, closer to 2000 kg m−3.

7. Conclusion

We present a new approach of determining the rotational period
of asteroids from optical light curves. The key aspects of the
approach are:

– Fit of Fourier series to the data by the least-squares method.
– Selection of the model with the lowest weighted root-mean

square residuals.
– Selection of the lowest possible order of Fourier series,

following the principle of “the less the better”.
– Check with the F-test if higher orders Fourier series are

necessary.

– Test the number of local maxima of the function. Multiply
the period by two if only one local maxima is present (we
assume that the shape mostly produces the light curve).

– Report the determined rotation period with its uncertain-
ties. This includes the confidence interval of the period
and the possible alternative rotational periods (ambiguous
solutions with similar residuals, generally alises of the solu-
tion). If there are too many alternative periods, an interval
encompassing all these periods is reported.

This approach was used to compute the rotational periods of
asteroids observed by Transiting Exoplanet Survey Satellite
(TESS) reported by Pál et al. (2020). This dataset has obser-
vations of 9912 asteroids. We determined the period of 4521
asteroids with an accuracy better than 10%.

Comparison of our results with Pál et al. (2020) shows 78.5%
of a full agreement. For some of the asteroids, we identified the
advantage of our technique, in particular, when fitting higher
order of Fourier series and checking for the number of local max-
ima. The method we propose here is robust and can be applied
to any dataset of dense light curves of asteroids. Thus, we plan
to use it on available asteroid datasets in a future work.

Data availability

The catalog is available at the CDS via anonymous ftp to
cdsarc.cds.unistra.fr (130.79.128.5) or via https://
cdsarc.cds.unistra.fr/viz-bin/cat/J/A+A/693/A66
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